

Oracle-Regular / Introducing JavaFX 8 Programming / Herb Schildt / 255-1 / Blind folio: 1

CHAPTER
1

JavaFX Fundamentals

01-ch01.indd 1 20/05/15 6:17 PM

Oracle-Regular / Introducing JavaFX 8 Programming / Herb Schildt / 255-1

2 Introducing JavaFX 8 Programming

In today’s computing environment the user interface is a key factor in determining
a program’s success or failure. The reasons for this are easy to understand. First,
the look and feel of a program defines the initial user experience. Thus, it forms

the user’s first impression—and first impressions matter because they often become
lasting impressions. Second, the user interface is the way in which a user interacts
with a program each time it is used. Therefore, the overall quality of a program is
judged, in part, by the usability and appeal of its interface. To be successful, a user
interface must be convenient, well organized, and consistent. It must also have one
thing more: that “visual sparkle” that users have come to expect. For today’s Java
programmer, JavaFX is the best way to provide such interfaces.

JavaFX is a collection of classes and interfaces that defines Java’s modern graphical
user interface (GUI). It can be used to create the types of GUIs demanded by rich
client applications in the contemporary marketplace. JavaFX supplies a diverse set
of controls, such as buttons, scroll panes, text fields, check boxes, trees, and tables,
that can be tailored to fit nearly any application. Furthermore, effects, transforms,
and animation can be employed to enhance the visual appeal of the controls. JavaFX
also streamlines the creation of an application by simplifying the management of its
GUI elements and the application’s deployment. Thus, JavaFX not only enables you
to build more exciting, visually appealing user interfaces, it also makes your job easier
in the process. Simply put: JavaFX is a powerful, state-of-the-art GUI framework that
is defining the future of GUI programming in Java.

This book provides a compact, fast-paced introduction to JavaFX programming.
As you will soon see, JavaFX is a large, feature-rich system, and in many cases, one
feature interacts with or supports another. As a result, it can be difficult to discuss
one aspect of JavaFX without involving others. The purpose of this chapter is to
introduce the fundamentals of JavaFX, including its history, basic concepts, core
features, and the general form of a JavaFX program. Subsequent chapters will expand
on the foundation presented here, so a careful reading is advised.

One more point: This book assumes that you have a working knowledge of Java.
You need not be a Java expert, but you should be comfortable with the fundamentals
of the language. However, prior experience with other GUI frameworks is not required,
although such prior experience may help you advance more quickly.

We will begin by putting JavaFX into its historical context.

A Brief History of Java’s GUI Frameworks
Like most things in programming, the GUI frameworks defined by Java have evolved
over time, and JavaFX is Java’s third such framework. Before you begin programming
with JavaFX, it is helpful to understand in a general way why JavaFX was created and
how it relates to and improves on Java’s previous GUIs.

01-ch01.indd 2 20/05/15 6:17 PM

Oracle-Regular / Book Title / Author Name / 000 000-0Oracle-Regular / Introducing JavaFX 8 Programming / Herb Schildt / 255-1

Chapter 1: JavaFX Fundamentals 3

The AWT: Java’s First GUI Framework
Java’s original GUI framework was the Abstract Window Toolkit (AWT). The AWT
offered only rudimentary support for GUI programming. For example, its set of
controls is quite limited by today’s standard. One reason for the limited nature of
the AWT is that it translates its various visual components into their corresponding
platform-specific equivalents, or peers. Because the AWT components rely on native
code resources, they are referred to as heavyweight.

The AWT’s use of native peers led to several problems. For example, because of
variations between operating systems, a component might act differently on different
platforms. This potential variability threatened the overarching philosophy of Java:
write once, run anywhere. Also, the look and feel of each component was fixed
(because it is defined by the platform) and could not be (easily) changed. Furthermore,
the use of heavyweight components caused some frustrating restrictions. For example,
a heavyweight component was always opaque.

Swing
Not long after Java’s original release, it became apparent that the limitations and
restrictions present in the AWT were sufficiently serious that a better approach was
needed. The solution was Swing. Introduced in 1997, Swing was included as part of
the Java Foundation Classes (JFC). Swing was initially available for use with Java 1.1
as a separate library. However, beginning with Java 1.2, Swing (and the rest of the
JFC) was fully integrated into Java.

Swing addressed the limitations associated with the AWT’s components through
the use of two key features: lightweight components and a pluggable look and
feel. Let’s look briefly at each. With very few exceptions, Swing components are
lightweight. This means the components are written entirely in Java. They do not rely
on platform-specific peers. Lightweight components have some important advantages,
including efficiency and flexibility. Furthermore, because lightweight components
do not translate into platform-specific peers, the look and feel of each component
is determined by Swing, not by the underlying operating system. This means that each
component can work in a consistent manner across all platforms. It is also possible
to separate the look and feel of a component from the logic of the component, and
this is what Swing does. Separating out the look and feel provides a significant
advantage: you can “plug in” a new look and feel. In other words, it becomes
possible to change the way that a component is rendered without affecting any of
its other aspects or creating side effects in the code that uses the component. In
short, Swing solved the problems of the AWT in an effective, elegant manner.

There is one other important aspect of Swing: it uses an architecture based on a
modified Model-View-Controller (MVC) concept. In MVC terminology, the model
corresponds to the state information associated with a component. The view
determines how the control is displayed on the screen. The controller determines

01-ch01.indd 3 20/05/15 6:17 PM

Oracle-Regular / Introducing JavaFX 8 Programming / Herb Schildt / 255-1

4 Introducing JavaFX 8 Programming

how the component reacts to the user. The MVC approach enables any of its pieces
to be changed without affecting the other two. For example, you can change the view
without affecting the model. In Swing, the high level of separation between the
view and the controller was not beneficial. Instead, Swing uses a modified version
of MVC that combines the view and the controller into a single logical entity. This is
called separable model architecture. However, the benefits of the MVC concept are
still attained, providing support for Swing’s pluggable look-and-feel capabilities.

JavaFX
Swing was so successful that it remained the primary Java GUI framework for over a
decade, which is a very long time in the fast-paced world of computing. Of course,
computing continued to move forward. Today the trend is toward more dramatic,
visually engaging effects—that “visual sparkle” mentioned earlier. Such effects were
troublesome to create with Swing. Furthermore, the conceptual basis that underpins
the design of GUI frameworks has advanced beyond that used by Swing. To better
handle the demands of the modern GUI and utilize advances in GUI design, a new
approach was needed. The result is JavaFX: Java’s next-generation GUI framework.

JavaFX offers all of the advantages of Swing but provides a substantially updated
and improved approach. For example, it defines a set of modern GUI controls and
enables you to easily incorporate special effects into those controls. Its improved
architecture, based on the scene graph feature described later in this chapter, streamlines
the management of a program’s windows. For example, it automates the once-tedious
repaint process. Like Swing, JavaFX uses an MVC-based architecture. Deployment
is simplified because JavaFX applications can be run in a variety of environments
without recoding. Although not the focus of this book, JavaFX also supports the use
of CSS and FXML to style and build a GUI. In short, JavaFX sets a new standard for
the contemporary GUI framework.

It is important to mention that the development of JavaFX occurred in two main
phases. The original JavaFX was based on a scripting language called JavaFX Script.
However, JavaFX Script has been discontinued. Beginning with the release of JavaFX 2.0,
JavaFX has been programmed in Java itself and provides a comprehensive API. JavaFX
has been bundled with Java since JDK 7, update 4. At the time of this writing, the
latest version of JavaFX is JavaFX 8, which is included with JDK 8. (The version
number is 8 to align with the JDK version. Thus, the numbers 3 through 7 were
skipped.) JavaFX 8 is the version of JavaFX described in this book. When the term
JavaFX is used, it refers to JavaFX 8.

Before we continue, it is useful to answer one question that naturally arises
relating to JavaFX: Is JavaFX designed as a replacement for Swing? The answer is,
essentially, Yes. However, Swing will continue to be part of Java programming for
some time to come. The reason is that there is a large amount of Swing legacy code.
Furthermore, there are legions of programmers who know how to program for

01-ch01.indd 4 20/05/15 6:17 PM

Oracle-Regular / Book Title / Author Name / 000 000-0Oracle-Regular / Introducing JavaFX 8 Programming / Herb Schildt / 255-1

Chapter 1: JavaFX Fundamentals 5

Swing, Nevertheless, JavaFX has clearly been positioned as the GUI framework of
the future. It is expected that over the next few years, JavaFX will supplant Swing for
new projects, and many Swing-based applications will migrate to JavaFX. One other
point: it is also possible to use both JavaFX and Swing in an application, thus enabling
a smooth transition from Swing to JavaFX.

JavaFX Basic Concepts
Before you can create a JavaFX application, there are several key concepts and
features you must understand. Although JavaFX has similarities with Java’s other
GUIs, it has substantial differences. For example, the overall organization of JavaFX
and the relationship of its main components differ significantly from either Swing or
the AWT. Therefore, even if you have experience in coding for one of Java’s other
GUI frameworks, a careful reading of the following sections is advised.

The JavaFX Packages
The JavaFX framework is contained in packages that begin with the javafx prefix.
At the time of this writing, there are more than 30 JavaFX packages in its API
library. Here are four examples: javafx.application, javafx.stage, javafx.scene,
and javafx.scene.layout. Although we will use only a few JavaFX packages in this
chapter, you might want to spend some time browsing the JavaFX packages. Doing
so will give you an idea of the wide array of functionality that JavaFX offers.

Setting the Stage with the Stage and Scene Classes
The central metaphor implemented by JavaFX is the stage. As in the case of an actual
stage play, a stage contains a scene. Thus, loosely speaking, a stage defines a space
and a scene defines what goes in that space. Or, put another way, a stage is a container
for scenes and a scene is a container for the items that comprise the scene. As a
result, all JavaFX applications have at least one stage and one scene. These elements
are encapsulated in the JavaFX API by the Stage and Scene classes. To create a JavaFX
application, you will, at a minimum, add at least one Scene object to a Stage. Let’s
look a bit more closely at these two classes.

Stage is a top-level container. All JavaFX applications automatically have access
to one Stage, called the primary stage. The primary stage is supplied by the run-time
system when a JavaFX application is started. Although you can create other stages,
for many applications, the primary stage will be the only one required.

As mentioned, Scene is a container for the items that comprise the scene. These
can consist of various types of GUI elements, such as controls, text, and graphics. To
create a scene, you will add elements to an instance of Scene. Then, set that Scene
on a Stage.

01-ch01.indd 5 20/05/15 6:17 PM

Oracle-Regular / Introducing JavaFX 8 Programming / Herb Schildt / 255-1

6 Introducing JavaFX 8 Programming

Nodes and Scene Graphs
The elements of a scene are called nodes. For example, a push button control is a
node. However, nodes can also consist of groups of nodes. Furthermore, a node
can have a child node. In this case, a node with a child is called a parent node or
branch node. Nodes without children are terminal nodes and are called leaves. The
collection of all nodes in a scene creates what is referred to as a scene graph, which
comprises a tree.

There is one special type of node in the scene graph, called the root node. This
is the top-level node and is the only node in the scene graph tree that does not have
a parent. Thus, with the exception of the root node, all other nodes have parents,
and all nodes either directly or indirectly descend from the root node.

The base class for all nodes is Node. There are several other classes that are, either
directly or indirectly, subclasses of Node. These include Parent, Group, Region, and
Control, to name a few.

Layouts
JavaFX provides several layout panes that manage the process of placing elements in
a scene. For example, the FlowPane class provides a flow layout and the GridPane
class supports a row/column grid-based layout. Several other layouts, such as
BorderPane, which organizes output within four border areas and a center, are
available. Each inherits Node. The layouts are packaged in javafx.scene.layout.

The Application Class and the Life-Cycle Methods
A JavaFX application must be a subclass of the Application class, which is packaged
in javafx.application. Thus, your application class will extend Application. The
Application class defines three life-cycle methods that your application can override.
These are called init(), start(), and stop(), and are shown here, in the order in
which they are called:

void init()

abstract void start(Stage primaryStage)

void stop()

The init() method is called when the application begins execution. It is used to
perform various initializations. As will be explained, it cannot, however, be used to
create a stage or build a scene. If no initializations are required, this method need
not be overridden because an empty, default version is provided.

The start() method is called after init(). This is where your application begins,
and it can be used to construct and set the scene. Notice that it is passed a reference
to a Stage object. This is the stage provided by the run-time system and is the
primary stage. Also notice that this method is abstract. Thus, it must be overridden
by your application.

01-ch01.indd 6 20/05/15 6:17 PM

Oracle-Regular / Book Title / Author Name / 000 000-0Oracle-Regular / Introducing JavaFX 8 Programming / Herb Schildt / 255-1

Chapter 1: JavaFX Fundamentals 7

When your application is terminated, the stop() method is called. It is here that
you can handle any cleanup or shutdown chores. In cases in which no such actions
are needed, an empty, default version is provided.

Launching a JavaFX Application
In general, when a JavaFX application begins execution, an instance of the subclass
of Application defined by the application is created. Then init(), followed by start(),
is executed. However, sometimes, such as in the case of a free-standing, self-contained
JavaFX application, a call to the launch() method defined by Application may be
needed. So that the examples in this book can be run in all of the ways supported by
JavaFX, launch() is included in all of the programs.

The launch() method has two forms. Here is the one used in this book:

public static void launch(String ... args)

Here, args is a possibly empty list of strings that typically specifies command-line
arguments. When called, launch() causes the application to be constructed,
followed by calls to init() and start(). The launch() method will not return until
after the application has terminated. This version of launch() starts the subclass of
Application from which launch() is called. The second form of launch() lets you
specify a class other than the enclosing class to start. As a general rule, launch() is
called from main().

It is important to emphasize that neither a main() method nor a call to
launch() is necessary in all cases for a JavaFX program. So don’t be surprised
when you see other JavaFX code that does not include them. However, including
main() and launch() ensures that the code can be used in the widest range of
circumstances. Also, an explicit call to launch() is needed if your application
requires a main() method for a purpose other than starting the JavaFX application.
Thus, the programs in this book include both main() and launch() methods.

A JavaFX Application Skeleton
All JavaFX applications share the same basic skeleton. Therefore, before looking
at any more JavaFX features, it will be useful to see what that skeleton looks like.
In addition to showing the general form of a JavaFX application, the skeleton
illustrates how to launch the application and demonstrates when the life-cycle
methods are called. A message noting when each life-cycle method executes is
displayed on the console via System.out. The complete skeleton is shown here:

// A JavaFX application skeleton.

import javafx.application.*;
import javafx.scene.*;

01-ch01.indd 7 20/05/15 6:17 PM

Oracle-Regular / Introducing JavaFX 8 Programming / Herb Schildt / 255-1

8 Introducing JavaFX 8 Programming

import javafx.stage.*;
import javafx.scene.layout.*;

public class JavaFXSkel extends Application {

 public static void main(String[] args) {

 System.out.println("Launching JavaFX application.");

 // Start the JavaFX application by calling launch().
 launch(args);
 }

 // Override the init() method.
 public void init() {
 System.out.println("Inside the init() method.");
 }

 // Override the start() method.
 public void start(Stage myStage) {

 System.out.println("Inside the start() method.");

 // Give the stage a title.
 myStage.setTitle("JavaFX Skeleton");

 // Create a root node. In this case, a flow layout
 // is used, but several alternatives exist.
 FlowPane rootNode = new FlowPane();

 // Create a scene.
 Scene myScene = new Scene(rootNode, 300, 200);

 // Set the scene on the stage.
 myStage.setScene(myScene);

 // Show the stage and its scene.
 myStage.show();
 }

 // Override the stop() method.
 public void stop() {
 System.out.println("Inside the stop() method.");
 }
}

01-ch01.indd 8 20/05/15 6:17 PM

Oracle-Regular / Book Title / Author Name / 000 000-0Oracle-Regular / Introducing JavaFX 8 Programming / Herb Schildt / 255-1

Chapter 1: JavaFX Fundamentals 9

Although the skeleton is quite short, it can be compiled and run. It produces the
empty window, shown here:

The skeleton also produces the following output on the console:

Launching JavaFX application.
Inside the init() method.
Inside the start() method.

When you close the window, this message is displayed:

Inside the stop() method.

Of course, in a real program, the life-cycle methods would not normally output
anything to System.out. They do so here simply to illustrate when each method is
called. Furthermore, as explained earlier, you will need to override the init() and
stop() methods only if your application must perform special startup or shutdown
actions. Otherwise, you can use the default implementations of these methods
provided by the Application class.

Let’s examine this program in detail. It begins by importing four packages.
The first is javafx.application, which contains the Application class. The Scene
class is packaged in javafx.scene, and Stage is packaged in javafx.stage. The
javafx.scene.layout package provides several layout panes. The one used by
the program is FlowPane.

Next, the application class JavaFXSkel is created. Notice that it extends Application.
As explained, Application is the class from which all JavaFX applications are derived.
JavaFXSkel contains four methods. The first is main(). It is used to launch the
application via a call to launch(). Notice that the args parameter to main() is
passed to the launch() method. Although this is a common approach, you can pass
a different set of parameters to launch(), or none at all. One other point: as mentioned
earlier, launch() and main() are not required in all cases. However, for reasons already
explained, both main() and launch() are included in the programs in this book.

01-ch01.indd 9 20/05/15 6:17 PM

Oracle-Regular / Introducing JavaFX 8 Programming / Herb Schildt / 255-1

10 Introducing JavaFX 8 Programming

When the application begins, the init() method is called first by the JavaFX
run-time system. For the sake of illustration, it simply displays a message on
System.out, but it would normally be used to initialize some aspect of the application.
Of course, if no initialization is required, it is not necessary to override init()
because an empty, default implementation is provided. It is important to emphasize
that init() cannot be used to create the stage or scene portions of a GUI. Rather,
these items should be constructed and displayed by the start() method.

After init() finishes, the start() method executes. It is here that the initial scene
is created and set to the primary stage. Let’s look at this method line by line. First,
notice that start() has a parameter of type Stage. When start() is called, this
parameter will receive a reference to the primary stage of the application. It is on
this stage that you will set a scene for the application.

After displaying a message on the console indicating that start() has begun
execution, start() sets the title of the stage using this call to setTitle():

myStage.setTitle("JavaFX Skeleton");

Although this step is not necessarily required, it is customary for stand-alone
applications. This title becomes the name of the main application window.

Next, a root node for a scene is created. The root node is the only node in a scene
graph tree that does not have a parent. In this case, a FlowPane is used for the root
node, but there are several other classes that can be used for the root.

FlowPane rootNode = new FlowPane();

As mentioned, a FlowPane uses a flow layout. This is a layout in which elements are
positioned line by line, with lines wrapping as needed. (Thus, it works much like the
FlowLayout class used by the AWT and Swing.) By default, a horizontal flow is used,
but it is possible to specify a vertical flow. Although not needed by this skeletal
application, it is also possible to specify other layout properties, such as a vertical
and horizontal gap between elements and an alignment.

The following line uses the root node to construct a Scene:

Scene myScene = new Scene(rootNode, 300, 200);

Scene provides several versions of its constructor. The one used here creates a scene
that has the specified root with the specified width and height. It is shown here:

Scene(Parent rootnode, double width, double height)

Notice that the type of rootnode is Parent. It is a subclass of Node and encapsulates
nodes that can have children. Also notice that the width and the height are double
values. This lets you pass fractional values, if needed. In the skeleton, the root is
rootNode, the width is 300, and the height is 200.

01-ch01.indd 10 20/05/15 6:17 PM

Oracle-Regular / Book Title / Author Name / 000 000-0Oracle-Regular / Introducing JavaFX 8 Programming / Herb Schildt / 255-1

Chapter 1: JavaFX Fundamentals 11

The next line in the program sets myScene as the scene for myStage:

myStage.setScene(myScene);

Here, setScene() is a method defined by Stage that sets the scene to that specified
by its argument.

The last line in start() displays the stage and its scene:

myStage.show();

In essence, show() shows the window that was created by the stage and scene.
When you close the application, its window is removed from the screen and the

stop() method is called by the JavaFX run-time system. In this case, stop() simply
displays a message on the console, illustrating when it is called. However, stop()
would not normally display anything. Furthermore, if your application does not
need to handle any shutdown actions, there is no reason to override stop() because
an empty, default implementation is provided.

Compiling and Running a JavaFX Program
One important advantage of JavaFX is that the same program can be run in a variety
of different execution environments. For example, you can run a JavaFX program as
a stand-alone desktop application, inside a web browser, or as a Web Start application.
However, different ancillary files may be needed in some cases, such as a JAR file,
an HTML file, or a Java Network Launch Protocol (JNLP) file.

In general, a JavaFX program is compiled like any other Java program. However,
depending on the target execution environment, some additional steps may be required.
For this reason, often the easiest way to compile a JavaFX application is to use an
Integrated Development Environment (IDE) that fully supports JavaFX programming,
such as NetBeans. Although the specific instructions for using an IDE differ among
IDEs, as a general rule, to compile and run a JavaFX program, first create a JavaFX
project and then enter the JavaFX program as the project’s source file.

Alternatively, if you are accustomed to using the command line and just want to
compile and run the JavaFX applications shown in this book, you can easily do so
using Java’s command-line tools. First, compile the application in the way you do
any other Java program, using javac. This creates a .class file that can then be run by
java. For example, to compile and run JavaFXSkel.java, you can use this command-
line sequence:

javac JavaFXSkel.java
java JavaFXSkel

If you are comfortable using the command-line tools, they offer the easiest way to
try the examples in this book.

01-ch01.indd 11 20/05/15 6:17 PM

Oracle-Regular / Introducing JavaFX 8 Programming / Herb Schildt / 255-1

12 Introducing JavaFX 8 Programming

NOTE
If you use the command-line tools, you can still
convert a JavaFX application contained in .class
files into a fully deployable form by use of the
javapackager command-line tool. (This tool was
previously called javafxpackager, but has been
renamed.) Consult Oracle’s online documentation
for details.

The JavaFX Application Thread
In the preceding discussion, it was mentioned that you cannot use the init() method
to construct a stage or scene. You also cannot create these items inside the application’s
constructor. The reason is that a stage or scene must be constructed on the JavaFX
application thread. However, the application’s constructor and the init() method
are called on the main thread, also called the launcher thread. Thus, they can’t be
used to construct a stage or scene. Instead, you must use the start() method, as the
skeleton demonstrates, to create the initial GUI because start() is called on the
application thread.

Furthermore, any changes to the GUI currently displayed must be made from
the application thread. Fortunately, this is a fairly easy rule to follow because, as a
general rule, interactions with your program, such as user input, take place on the
application thread. The stop() method is also called on the application thread.

Build a Simple Scene Graph
Although the preceding skeleton is fully functional, its scene graph is empty. Thus,
it does not contain any elements and its window is blank. Of course, the point of
JavaFX is to build user interfaces. To do this, you must build a scene graph. To
introduce the process, we will build a very simple one that contains only one
element: a label.

The label is one of the controls provided by JavaFX. As mentioned earlier, JavaFX
contains a rich assortment of controls. Controls are the means by which the user
interacts with an application. The simplest control is the label because it just displays
a message or an image. Because it is quite easy to use, the label is a good way to
introduce the techniques needed to begin building a scene graph.

In JavaFX, a label is an instance of the Label class, which is packaged in
javafx.scene.control. Label inherits Labeled and Control, among other classes.
The Labeled class defines several features that are common to all labeled elements
(that is, those that can contain text), and Control defines features related to all controls.

The Label constructor that we will use is shown here:

Label(String str)

01-ch01.indd 12 20/05/15 6:17 PM

Oracle-Regular / Book Title / Author Name / 000 000-0Oracle-Regular / Introducing JavaFX 8 Programming / Herb Schildt / 255-1

Chapter 1: JavaFX Fundamentals 13

The string that is displayed is specified by str.
Once you have created a label (or any other control), it must be added to the

scene’s content, which means adding it to the scene graph. Here is the technique we
will use: First call getChildren() on the root node of the scene graph. It returns a list
of the child nodes in the form of an ObservableList<Node>. ObservableList is
packaged in javafx.collections, and it inherits java.util.List, which is part of Java’s
Collections Framework. List defines a collection that represents a list of objects.
Although a discussion of List and the Collections Framework is outside the scope of
this book, it is easy to use ObservableList to add child nodes. Simply call add() on
the list of child nodes returned by getChildren(), passing in a reference to the node
to add, which in this case is a label.

The following program puts the preceding discussion into action by creating a
simple JavaFX application that displays a label:

// Demonstrate a simple scene graph that contains a label.

import javafx.application.*;
import javafx.scene.*;
import javafx.stage.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;

public class SimpleSceneGraphDemo extends Application {

 public static void main(String[] args) {

 // Start the JavaFX application by calling launch().
 launch(args);
 }

 // Override the start() method.
 public void start(Stage myStage) {

 // Give the stage a title.
 myStage.setTitle("Demonstrate A Simple Scene Graph");

 // Use a FlowPane for the root node.
 FlowPane rootNode = new FlowPane();

 // Create a scene.
 Scene myScene = new Scene(rootNode, 300, 200);

 // Set the scene on the stage.
 myStage.setScene(myScene);

 // Create a label.

01-ch01.indd 13 20/05/15 6:17 PM

Oracle-Regular / Introducing JavaFX 8 Programming / Herb Schildt / 255-1

14 Introducing JavaFX 8 Programming

 Label myLabel = new Label("A simple JavaFX label.");

 // Add the label to the scene graph.
 rootNode.getChildren().add(myLabel);

 // Show the stage and its scene.
 myStage.show();
 }
}

This program produces the following window:

In the program, pay special attention to this line:

rootNode.getChildren().add(myLabel);

It adds the label to the list of children for which rootNode is the parent. Although
this line could be separated into its individual pieces if necessary, you will often see
it as shown here.

Of course, a scene graph can contain more than one control. Simply add each
control to the scene graph, as just shown. For example, this version of start() adds
three labels:

// Override the start() method. This time, add three labels
// to the scene graph.
public void start(Stage myStage) {

 // Give the stage a title.
 myStage.setTitle("Demonstrate A Simple Scene Graph");

 // Use a FlowPane for the root node.
 FlowPane rootNode = new FlowPane();

 // Create a scene.
 Scene myScene = new Scene(rootNode, 300, 200);

01-ch01.indd 14 20/05/15 6:17 PM

Oracle-Regular / Book Title / Author Name / 000 000-0Oracle-Regular / Introducing JavaFX 8 Programming / Herb Schildt / 255-1

Chapter 1: JavaFX Fundamentals 15

 // Set the scene on the stage.
 myStage.setScene(myScene);

 // Create a label.
 Label myLabel = new Label("Label One ");

 // Create a second label.
 Label myLabel2 = new Label("Label Two ");

 // Create a third label.
 Label myLabel3 = new Label("Label Three");

 // Add three labels to the scene graph.
 rootNode.getChildren().add(myLabel);
 rootNode.getChildren().add(myLabel2);
 rootNode.getChildren().add(myLabel3);

 // Show the stage and its scene.
 myStage.show();
}

Here, the sequence

rootNode.getChildren().add(myLabel);
rootNode.getChildren().add(myLabel2);
rootNode.getChildren().add(myLabel3);

adds myLabel, myLabel2, and myLabel3 to the root node of the graph. Thus, after
this sequence executes, rootNode will have three child nodes.

If you substitute this version of start() into the preceding program, it will produce
the following window:

Notice that the three labels are positioned left to right in the order in which they
were added to the scene graph. This is because a flow layout is used. With a flow

01-ch01.indd 15 20/05/15 6:17 PM

Oracle-Regular / Introducing JavaFX 8 Programming / Herb Schildt / 255-1

16 Introducing JavaFX 8 Programming

layout, elements in the scene graph are displayed line by line. When the end of a line
is reached, the next line is begun. You can see this if you narrow the window produced
by the program. At some point, one of the labels will automatically wrap down to
the next line. If you want a different layout strategy, simply use a different layout
pane. The rest of the program remains the same. Various layout panes are described
later in this book, but for now, the flow layout is sufficient for our purposes.

Before moving on, it is useful to point out that ObservableList provides a method
called addAll() that can be used to add two or more children to the scene graph in a
single call. For example, this line adds three labels to the scene graph in a single call:

// Add all three labels to the scene graph in one call
// rootNode.getChildren().addAll(myLabel, myLabel2, myLabel3);

Thus, it produces the same scene graph as the one created by the three separate
calls to add() shown earlier. The only difference is that it is accomplished by a
single call to addAll().

In addition to adding a control to a scene graph, you can remove one.
This is done by calling remove() on the ObservableList returned by getChildren().
For example,

rootNode.getChildren().remove(myLabel);

removes myLabel from the scene.
In general, ObservableList supports a wide range of list-management methods.

Here are two examples: You can determine if the list is empty by calling isEmpty().
You can obtain the number of nodes in the list by calling size(). You will want to
explore ObservableList in greater depth as you advance in your study of JavaFX.

01-ch01.indd 16 20/05/15 6:17 PM

Oracle-Java Fluff / Raspberry Pi with Java: Programming the Internet of Things / Stephen Chin / 201-2 / Chapter 1

CHAPTER
1

Baking Pi

01-ch01.indd 1 24/09/15 12:03 PM

 2 Raspberry Pi with Java: Programming the Internet of Things

Oracle-Java Fluff / Raspberry Pi with Java: Programming the Internet of Things / Stephen Chin / 201-2 / Chapter 1

In this chapter I’ll walk you through the process of setting up (or baking,
if you will) your Raspberry Pi.

This chapter will take you through a first-time installation of Raspbian
on a Raspberry Pi with the latest Java version. I will also detail some additional
configuration that you may want to change to optimize Java and other visual
applications. Finally, I will show you how to create a network between your
Raspberry Pi and another machine and run a simple Java application.

Powering Your Raspberry Pi
The Raspberry Pi is a great platform for getting started with embedded
computing. It has a great community supporting it with lots of options for
hardware. If this is your first time setting up a Raspberry Pi, you will need the
following hardware to get started:

 ■ Raspberry Pi The same instructions apply to Models B+, A+, B, A,
and 2, but in this guide I will be using a B+.

 ■ SD card A good quality 8GB or larger SD card is recommended.
If you purchase one with the New Out Of Box Software (NOOBS)
preinstalled, you can save some time in setup.

 ■ Power supply The Raspberry Pi is powered by a micro-USB cable,
the recommended specifications for which are 2A at 5V. You can
often get away with a smaller power supply (as small as 700mA)
depending on what USB devices are connected.

 ■ Keyboard and mouse Pretty much any USB keyboard will do.
The mouse is optional if you don’t mind navigating the GUI via the
keyboard.

 ■ Monitor or TV The Raspberry Pi supports composite or HDMI
displays. HDMI is readily convertible to DVI or VGA if that is what
your monitor supports.

The first step is to set up your SD card. If you have a Model 2, B+, or A+
Raspberry Pi, then this will be in the form of a microSD card. If you have the
older Model B or A, then this will be a full-size SD card. Both types of cards

01-ch01.indd 2 24/09/15 12:03 PM

 Chapter 1: Baking Pi 3

Oracle-Java Fluff / Raspberry Pi with Java: Programming the Internet of Things / Stephen Chin / 201-2 / Chapter 1

operate the same, and microSD cards usually come with adapters to fit in
full-size slots, so that is the obvious choice. The difference in size between a
microSD card and a full-size SD card can be seen in Figure 1-1.

The Raspberry Pi foundation ships SD cards with NOOBS preinstalled, as
photographed in Figure 1-1. This is a good trade-off between cost, convenience,
and performance, and is recommended for anyone who is just getting started.
Most online retailers offer a Raspberry Pi bundle that includes the NOOBS SD
card for a small incremental cost.

If you have purchased an SD card with NOOBS preinstalled, skip to the
section entitled “Installing Raspbian.”

Purchasing Compatible SD Cards
If you need a higher-performance or larger-capacity card, you can buy
SD cards and format them yourself. This is also typically less expensive,
especially if you are purchasing in bulk. The key criteria to use when
selecting an SD card are size, write performance, and quality.

The minimum size card you can use with the Raspbian distribution is
4GB, although this is not large enough to support NOOBS and will leave very
little room for your software. At least 8GB is recommended, and for a small
incremental cost you can get a 16GB card. The largest-capacity card that is

FIGURE 1-1. NOOBS microSD card with full-size adapter

01-ch01.indd 3 24/09/15 12:03 PM

 4 Raspberry Pi with Java: Programming the Internet of Things

Oracle-Java Fluff / Raspberry Pi with Java: Programming the Internet of Things / Stephen Chin / 201-2 / Chapter 1

supported in the Raspberry Pi is 64GB, although this will only be helpful if
you are doing data-intensive tasks, such as storing sensor data or video over a
long period of time.

When shopping for SD cards, you can find a class identifier written
on them. A higher number indicates better write performance, with the
minimum sustained write speed equal to the number. For example, a class 4
card is tested to support a sustained write speed of 4 megabytes per second
(MBps). Similarly, a class 10 card is tested to support a sustained write speed
of 10MBps. This matters most if you are developing an application that
will write a large amount of sequential data. It also can significantly speed
the initial setup time of your card. However, this is an indication of neither
read performance nor nonsequential write performance, so the real-world
performance of your SD card may vary.

Perhaps the most important factor is the quality of the card. Buying from
a well-known manufacturer and reputable vendor greatly increases the
chances you will get the size and performance you are paying for. Unknown
manufacturers and ill-reputed vendors may sell you low-quality or counterfeit
cards that perform well below their advertised specs. A good community
resource for researching SD card compatibility and performance is the
Raspberry Pi SD cards page on the Embedded Linux (eLinux) wiki: http://
elinux.org/RPi_SD_cards.

Formatting SD Cards
The NOOBS installer requires that your SD card be formatted with a File
Allocation Table (FAT) filesystem. Both FAT16 (more commonly referred to as
FAT) and FAT32 are supported, but not ExFAT. If you have purchased a large
SD card, it often comes formatted with ExFAT, so you will need to reformat it
with FAT32 in order to proceed with the NOOBS install. The easiest way to
make sure your SD card is formatted correctly is to use the SD Association’s
SDFormatter utility on OS X or Windows: https://www.sdcard.org/downloads/
formatter_4/.

Figure 1-2 shows a screenshot of what the SDFormatter utility looks like
on OS X. Make sure that the correct SD card is selected so that you don’t
accidentally delete the wrong drive, and then choose the Overwrite Format
option. Specify the name of the card and click the Format button. This process
will take a while depending upon the speed and size of your SD card, so this
may be a good time to take a coffee break.

01-ch01.indd 4 24/09/15 12:03 PM

https://www.sdcard.org/downloads/formatter_4/
https://www.sdcard.org/downloads/formatter_4/
http://elinux.org/RPi_SD_cards
http://elinux.org/RPi_SD_cards

 Chapter 1: Baking Pi 5

Oracle-Java Fluff / Raspberry Pi with Java: Programming the Internet of Things / Stephen Chin / 201-2 / Chapter 1

If you are on Linux, you can accomplish the same thing with the GParted
tool, which is a visual disk manager. Make sure that you select the correct
partition and format as FAT or FAT32.

Once you have a properly formatted card, the rest of the installation is as
simple as following these steps:

1. Download the latest version of NOOBS from the Raspberry Pi
website: www.raspberrypi.org/downloads/.

2. Unzip the downloaded NOOBS archive. Most operating systems
come with built-in unzipping functionality.

3. Copy the contents of the extracted folder to your SD card. Make sure
that you do not have an enclosing folder.

FIGURE 1-2. SDFormatter utility

01-ch01.indd 5 24/09/15 12:03 PM

http://www.raspberrypi.org/downloads/

 6 Raspberry Pi with Java: Programming the Internet of Things

Oracle-Java Fluff / Raspberry Pi with Java: Programming the Internet of Things / Stephen Chin / 201-2 / Chapter 1

Either NOOBS or NOOBS LITE will work, although I recommend the
former so that you don’t have to worry about networking your Raspberry Pi to
get it up and running.

Installing Raspbian
Once you have an SD card with NOOBS on it, you are ready to install the
Raspbian operating system and set up your Raspberry Pi. This process has
been streamlined with the latest installers, so you should have no trouble
getting set up quickly. Along the way I will point out common pitfalls that
you may encounter, especially with the older Raspberry Pi models.

Connecting Your Raspberry Pi
Here are the connections you will need to make the first time you turn on
your Raspberry Pi:

CAUTION
Never insert or remove the SD card while your
Raspberry Pi is plugged in. This can result in
corruption of the filesystem and lose important
data that you have stored on your Raspberry Pi.

1. Insert the SD card into the slot on the bottom.

 On Models A and B this slot is a full-size friction fit socket, so be
careful that you don’t use too much force (it goes in upside down).
On Models A+, B+, and 2 this slot is a spring-loaded microSD socket
that clicks upon insertion (also upside down). When removing the
SD card, you can simply pull out the card on Models A and B, but
for Models A+, B+, and 2, press it in and allow the spring to eject it.

TIP
The SD slots on Models A and B are easy to
damage if you use too much force (for example, if
you force the SD card in incorrectly). Fortunately,
this can often be remedied by simply bending the
pins back in shape.

01-ch01.indd 6 24/09/15 12:03 PM

 Chapter 1: Baking Pi 7

Oracle-Java Fluff / Raspberry Pi with Java: Programming the Internet of Things / Stephen Chin / 201-2 / Chapter 1

2. Connect the HDMI or composite cable to your monitor or TV.

 HDMI will give you better resolution and is preferred if you have a
supported monitor. If you’re using HDMI, plug in your monitor and
turn on the power before booting. Using composite on Models A
and B is fairly straightforward via the yellow RCA jack. However,
on Models A+, B+, and 2 you will need to use an adapter to get the
video signal out of the 3.5mm TRRS jack that is shared with audio.
For more details on this, see the example project in Chapter 8 that
talks about tip ordering and compatible cables.

NOTE
The reason why you should always plug in HDMI
and turn on your monitor before booting is
because the Raspberry Pi defaults to composite
input, which will give you a black screen if you
later hook up an HDMI device. However, this
is not the case when running NOOBS, so you
can get by the first boot without doing this in a
specific order.

3. Plug in your keyboard and mouse.

 These devices plug into the full-size USB host ports on the Raspberry
Pi. If you are using a Model A or A+, you will be limited to one USB
port, so you can either navigate via keyboard shortcuts and skip the
mouse altogether, or plug in a powered USB hub to connect more
devices.

CAUTION
On Models A and B the USB ports are not hot
swappable, so inserting or removing devices can
reset the Raspberry Pi, resulting in lost work or
filesystem corruption. This was fixed on Models
A+, B+, and 2.

4. Connect the micro-USB power.

As mentioned earlier, make sure you have a power supply that can provide
5V and ideally 2A of power. Higher current is fine since the Raspberry Pi

01-ch01.indd 7 24/09/15 12:03 PM

 8 Raspberry Pi with Java: Programming the Internet of Things

Oracle-Java Fluff / Raspberry Pi with Java: Programming the Internet of Things / Stephen Chin / 201-2 / Chapter 1

will only consume the power it needs, but with only a keyboard and mouse
hooked up, you can get away with a 700mA power supply. Your typical
computer USB slot will only provide 500mA and thus is not safe to use
with the Pi. On Models A and B, insufficient voltage from a poor USB cable
or insufficient current from a bad power supply can result in crashes and
filesystem corruption. Fortunately, the Raspberry Pi B+, A+, and 2 come with
power circuitry that ensures the voltage and current are sufficient before
turning on. They also draw less power than the older models, saving precious
battery life for embedded projects.

How to Tell Your Raspberry Pi Is Working
Once powered on, you will notice that the LED status lights on the Raspberry
Pi will light up. The red PWR LED indicates power and will stay solid as long
as the Raspberry Pi is plugged in. The green ACT LED indicates activity and
will start blinking irregularly shortly after you plug in the Pi. If the PWR LED
comes on but the ACT LED does not blink irregularly for a few seconds, this
is most likely a sign that the SD card is not working. This could be a bad
connection or an improperly formatted or installed card. Here are some
troubleshooting steps to try out:

 ■ If the red PWR LED is flickering, you likely have a Model A+, B+,
or 2 and have tripped the brownout circuitry. Try a different power
supply (higher current) or replace your micro-USB cable (which may
be too long, thin, or damaged).

 ■ If the green ACT LED doesn’t flash irregularly for a few seconds:

 ■ Try reseating your SD card. Turn off the power, unplug the SD
card, and then plug it in again, making sure it is fully inserted.
Remember that the SD card goes in upside down and should not
require a lot of force to insert or remove.

 ■ Check your SD card formatting and installation. Your SD card
should be formatted as FAT or FAT32 and have the NOOBS files
in the root of the filesystem (not in a folder). You can always buy
a preinstalled copy of NOOBS if you want to simplify this.

01-ch01.indd 8 24/09/15 12:03 PM

 Chapter 1: Baking Pi 9

Oracle-Java Fluff / Raspberry Pi with Java: Programming the Internet of Things / Stephen Chin / 201-2 / Chapter 1

Once you know the Raspberry Pi is working from seeing a few seconds of
activity on the ACT LED, the next thing to check is your display. Upon boot
the Raspberry Pi shows a rainbow test pattern for a second and then displays
a recovery screen for a few more seconds. After this it automatically boots
into the NOOBS installer, and you should see the installation screen shown
in Figure 1-3.

If your Raspberry Pi is booting according to the LEDs, but you don’t see
the NOOBS installation screen, try these troubleshooting tips:

 ■ Make sure your monitor power is on and the monitor is set to the
correct input (for example, it is easy to forget to switch the input
from VGA to HDMI).

FIGURE 1-3. NOOBS installer screen

01-ch01.indd 9 24/09/15 12:03 PM

 10 Raspberry Pi with Java: Programming the Internet of Things

Oracle-Java Fluff / Raspberry Pi with Java: Programming the Internet of Things / Stephen Chin / 201-2 / Chapter 1

 ■ If using HDMI, try safe mode. This is accomplished by pressing
the number 2 on your keyboard in NOOBS. Safe mode forces a
640 × 480, 60-Hz resolution that most monitors can support. It also
boosts the HDMI signal, which may help with long cables or high
interference.

 ■ If using composite, switch to PAL or NTSC. This is accomplished
by pressing the number 3 (for PAL) or 4 (for NTSC) to switch to
composite input and is only required when booting from NOOBS,
which defaults to HDMI.

NOTE
When switching NOOBS video modes with your
keyboard, make sure it is fully loaded (ACT LED
should have stopped blinking). Also, enable
numlock if you are using the numeric keypad.

Installing Raspbian with NOOBS
Raspbian is a Linux-based operating system that is a port of Debian and
optimized for the Raspberry Pi. It was created by Mark Thompson and Peter
Green and has been helped along by enthusiastic members of the Raspberry
Pi community. It also comes with optimized Java installed right out of the
box thanks to support from Oracle.

Picking up from the NOOBS installation screen shown in Figure 1-3 in the
previous section, you will want to select Raspbian as your operating system
and also set the correct locale and keyboard for your region. If you don’t have
a mouse connected, you can access the Language and Keyboard options via
the keyboard by using the letter l and number 9 keys, respectively. By default
the Raspberry Pi foundation sets the locale to the United Kingdom, which will
leave you hopelessly lost on the command line as you attempt to type the
pound symbol (#) or at sign (@) on a U.S. layout keyboard.

Figure 1-4 shows the number of Raspberry Pis by country as reported
by Rastrack. While the United States has the highest Raspberry Pi sales by
country, the UK wins with the most Pis per capita, so there is plenty of room
for growth in the rest of the world!

01-ch01.indd 10 24/09/15 12:03 PM

 Chapter 1: Baking Pi 11

Oracle-Java Fluff / Raspberry Pi with Java: Programming the Internet of Things / Stephen Chin / 201-2 / Chapter 1

After selecting the options, click the Install button or type the letter i to
begin the installation process. Installation takes about 20 minutes, give or take
a few minutes depending on the speed of your SD card. The installation screen
has a pretty accurate progress bar at the bottom, as shown in Figure 1-5, and
provides some helpful hints on the top for new Raspberry Pi owners. This is a
good time to grab a cup of joe as you wait for the success screen to pop up.

Once you click the OK button or press enter, the Raspberry Pi will
reboot and start up Raspbian for the first time. Raspbian has a typical Linux
boot screen with lots of scrolling text, and a cute Raspberry Pi logo in the
top-left corner.

Raspbian is set to automatically log in on your first boot and run the
Raspberry Pi Software Configuration Tool (raspi-config), as shown
in Figure 1-6. It is highly recommended to change the default password
(as discussed in the following list), but if you need to log in before you get
a chance to set it for some reason, the default username is pi and the default
password is raspberry.

FIGURE 1-4. Distribution of Raspberry Pis across the world

01-ch01.indd 11 24/09/15 12:03 PM

 12 Raspberry Pi with Java: Programming the Internet of Things

Oracle-Java Fluff / Raspberry Pi with Java: Programming the Internet of Things / Stephen Chin / 201-2 / Chapter 1

FIGURE 1-5. Raspberry Pi installation screen

FIGURE 1-6. Raspberry Pi Software Configuration Tool

01-ch01.indd 12 24/09/15 12:03 PM

 Chapter 1: Baking Pi 13

Oracle-Java Fluff / Raspberry Pi with Java: Programming the Internet of Things / Stephen Chin / 201-2 / Chapter 1

Here is a quick rundown of what the different options do (recommended
changes are noted):

 ■ Expand Filesystem This lets you expand the root filesystem to fit the
size of the SD card. If you used NOOBS to install, this has already
been taken care of during the install.

 ■ Change User Password Changing the password is highly
recommended for security purposes. Anyone who can access the
Raspberry Pi over the network will have root access if you don’t
change this.

 ■ Enable Boot to Desktop/Scratch This lets you boot to a graphical
user interface (GUI) with X Window System and optionally open
Scratch for visual programming. This book steers you to using the
command line, but anytime you want to open X Window System,
you can type startx.

 ■ Internationalisation Options If you forgot to change this during
the NOOBS install, you have another chance to rescue your
keyboard layout.

 ■ Enable Camera This enables support for the Pi Camera and is a
recommended setting.

 ■ Add to Rastrack This adds your Pi to a worldwide list of Raspberry
Pi locations on a map. It is fun to join in and provides valuable
statistics on the Raspberry Pi community as you discovered earlier.
Since this requires an Internet connection, you may want to revisit
this option after completing the upcoming “Networking Your
Raspberry Pi” section.

 ■ Overclock The default speed of the Raspberry Pi’s processor is
700 MHz for the A, B, A+, and B+, and 900 MHz for the Raspberry
Pi 2. You can optionally raise this; however, it is recommend to start
with the default speed. Overclocking the Pi may result in it running
hotter and shortening the life of its components.

 ■ Advanced Options Discussed in more detail in the next list.

 ■ About raspi-config This displays an information screen about the
Raspberry Pi.

01-ch01.indd 13 24/09/15 12:03 PM

 14 Raspberry Pi with Java: Programming the Internet of Things

Oracle-Java Fluff / Raspberry Pi with Java: Programming the Internet of Things / Stephen Chin / 201-2 / Chapter 1

Selecting Advanced Options brings up a submenu with the following
additional options:

 ■ Overscan This allows you to enable or disable overscan. If you
have a modern LCD, you can safely disable this and get a little
more screen real estate at the edges of your monitor.

 ■ Hostname Feel free to change your hostname to be unique.

 ■ Memory Split The memory on the Raspberry Pi is shared between
the CPU and the GPU. To improve performance of graphics-intensive
applications, I recommend setting GPU memory to at least 128MB.

 ■ SSH This option is for Secure Shell, which is enabled by default,
and is required for deployment of Java apps.

 ■ SPI This is general purpose input/output (GPIO) functionality that
needs to be enabled for some of the example projects in later chapters.

 ■ I2C Another GPIO feature for managing a connected bus of
devices, this option also needs to be enabled to support projects in
later chapters.

 ■ Serial This enables shell access over serial, although you will need
to disable it to free up the serial ports for a later project.

 ■ Audio This lets you force audio to go out over the HDMI or 3.5mm
headphone jacks.

 ■ Update This updates the raspi-config tool to the latest version.

On the list of options, the recommended changes are to change your
password, enable the Pi Camera, set/confirm the memory split to 128MB,
enable SPI, enable I2C, and disable serial. If you forget to do any of these
steps, don’t worry; I will remind you in future sections when the required
functionality is needed and instruct you to enable it if you haven’t already.

Once you are done making configuration changes, press the tab key and
select Finish. This will reboot your Raspberry Pi and give you your first login
prompt as shown in Figure 1-7. To log in, type the username pi and the new
password you chose.

01-ch01.indd 14 24/09/15 12:03 PM

 Chapter 1: Baking Pi 15

Oracle-Java Fluff / Raspberry Pi with Java: Programming the Internet of Things / Stephen Chin / 201-2 / Chapter 1

If you need to bring up the raspi-config utility again, you can always
do this from the command line by typing

sudo raspi-config

This is probably also a good time to mention the correct way to shut down
your Raspberry Pi. If you disconnect power from the Raspberry Pi while it
is running, you may damage the filesystem and cause corruption and data
loss. To prevent this, make sure that you properly halt the Raspberry Pi before
powering it off by using the following command:

sudo shutdown -h now

This command logs off all users, cleanly closes the filesystem, and
terminates before you power off the Pi. You will know your Pi is ready to
unplug when you see the green ACT LED flash ten times in sequence.

FIGURE 1-7. Raspberry Pi login prompt

01-ch01.indd 15 24/09/15 12:03 PM

 16 Raspberry Pi with Java: Programming the Internet of Things

Oracle-Java Fluff / Raspberry Pi with Java: Programming the Internet of Things / Stephen Chin / 201-2 / Chapter 1

To reboot you can use a similar command:

sudo shutdown -r now

As a shortcut you may see some Raspberry Pi users use the halt and
reboot commands. These behave as expected and are perfectly safe on the
Raspberry Pi, but they are not best practices when you are administering a
variety of Unix operating systems, because the behavior varies.

Networking Your Raspberry Pi
To communicate from your computer to the Raspberry Pi, you will have to
put your Raspberry Pi and computer on the same network so that your Pi is
accessible via TCP/IP. This is also the easiest networking option for Models A
and A+ that lack an Ethernet port. There are several different ways to do this
depending on the physical location of your computer, the network topology,
and your available hardware.

Connecting via Ethernet
If you have a router that acts as a Dynamic Host Configuration Protocol
(DHCP) server, you can simply plug the Raspberry Pi into your network
using an Ethernet cable. This only works for Raspberry Pi Models B, B+,
and 2, because Models A and A+ lack an Ethernet port.

Once connected, the Raspberry Pi will automatically try to get a network
address from the DHCP server. You can check for the IP address that the
Raspberry Pi acquired by typing the following command:

ip addr show eth0

Connecting via a Local Computer Network
You can also connect your Raspberry Pi directly to your PC using an Ethernet
cable. Again, this option is only available for Raspberry Pi Models B, B+,
and 2, but can be a great alternative if you are traveling or in a setting where
the network topology doesn’t allow your computer and Raspberry Pi to talk.

01-ch01.indd 16 24/09/15 12:03 PM

 Chapter 1: Baking Pi 17

Oracle-Java Fluff / Raspberry Pi with Java: Programming the Internet of Things / Stephen Chin / 201-2 / Chapter 1

TIP
The Raspberry Pi Ethernet adapter includes auto-
MDIX to detect and fix cable types, so you can
use either a crossover cable or a more common
straight Ethernet cable to connect devices.

The easiest way to accomplish this is to assign static IP addresses to both
your computer and the Raspberry Pi so they are both in the same subnet.
A common local subnet to use is 192.168.x.x, which is one of the reserved
subnets for local area networks. The configuration on your desktop computer
will look something like Figure 1-8 for OS X or Figure 1-9 for Windows.

On the Raspberry Pi you will need to modify the cmdline.txt file in the
boot folder. To do so, log in to the Raspberry Pi with the following command:

sudo nano /boot/cmdline.txt

FIGURE 1-8. Static IP configuration in OS X

01-ch01.indd 17 24/09/15 12:03 PM

 18 Raspberry Pi with Java: Programming the Internet of Things

Oracle-Java Fluff / Raspberry Pi with Java: Programming the Internet of Things / Stephen Chin / 201-2 / Chapter 1

Nano is a simple command-line editor that allows you to edit text files on
Unix systems. When you open the cmdline.txt file, you will get an editing
screen as shown in Figure 1-10. Scroll to the end of the line using the arrow
keys and type ip=192.168.0.2 (or a similar local IP address). Make sure to
leave a space after the last parameter (most likely, rootwait) and do not add
any carriage returns.

After rebooting your Pi, it will start up with the new IP address fixed, and
will be accessible from your computer with that IP address.

Connecting via a Wireless Network
A great option for networking both Raspberry Pi B and A variants is to use
a Wi-Fi adapter. This allows you to connect the Raspberry Pi to a wireless
network and access it from your computer remotely.

For this you will need a compatible Raspberry Pi Wi-Fi USB adapter. In
general, Wi-Fi devices utilizing the RTL8188CUS chipset are well supported

FIGURE 1-9. Static IP configuration in Windows

01-ch01.indd 18 24/09/15 12:03 PM

 Chapter 1: Baking Pi 19

Oracle-Java Fluff / Raspberry Pi with Java: Programming the Internet of Things / Stephen Chin / 201-2 / Chapter 1

on the Raspberry Pi. Often you will find certified Wi-Fi devices sold alongside
Raspberry Pis at vendor websites, but you may be able to find a cheaper or
faster Wi-Fi adapter with a little bit of research. For a full list of devices that
are known to work by the community, check the eLinux Wi-Fi adapter listing
here: http://elinux.org/RPi_USB_Wi-Fi_Adapters.

Raspbian comes with wpa_supplicant installed and set up for a wireless
network, so all you have to do is add your network configuration options
from the command line. To do this, I recommend using the WPA command-
line tool (wpa_cli), which lets you scan your network and add new wpa_
supplicant configurations. The advantage of using the command-line tool over
editing the configuration file directly is that you can’t make an error in your
configuration by missing punctuation or formatting.

Listing 1-1 shows an example of how to use wpa_cli to configure your
wireless settings. Obviously, you should replace ssid and psk with the SSID
and preshared key of your local network configuration, and this assumes
that you are using a network that broadcasts the SSID. Both WPA and WPA2
networks are supported by this configuration.

FIGURE 1-10. Setting a static IP address on the Raspberry Pi

01-ch01.indd 19 24/09/15 12:03 PM

http://elinux.org/RPi_USB_Wi-Fi_Adapters

 20 Raspberry Pi with Java: Programming the Internet of Things

Oracle-Java Fluff / Raspberry Pi with Java: Programming the Internet of Things / Stephen Chin / 201-2 / Chapter 1

Listing 1-1 WPA command-line tool for configuring Wi-Fi

pi@raspberrypi ~ $ wpa_cli
Selected interface 'wlan0'
Interactive mode
> scan
OK
<3>CTRL-EVENT-SCAN-RESULTS
<3>WPS-AP-AVAILABLE
> scan_results
bssid / frequency / signal level / flags / ssid
12:0d:7f:8b:be:9e 2437 92 [WPA2-PSK-CCMP][ESS] NightHacking-Guest
> add_network
0
> set_network 0 ssid "NightHacking-Guest"
OK
> set_network 0 psk "steveonjava"
OK
> enable_network 0
OK
> save_config
OK
> reconnect
OK
> quit

TIP
If you are still using WEP, it is possible to connect
your Raspberry Pi, but I don’t recommend it. WEP
has been proven insecure and can be cracked
in under a minute by low-end hardware and
freely available software. There are also some
new cryptographic attacks against WPA involving
vulnerabilities in TKIP. In short, upgrading your
network to WPA2 is an important security practice.

Updating and Upgrading
Now that you are on the network, the very first thing you should do is to
update your Raspbian distribution. This will ensure you have the latest
package listing and current versions of all of the core files. To do this, first
execute the following command to download the latest package listing:

sudo apt-get update

01-ch01.indd 20 24/09/15 12:03 PM

 Chapter 1: Baking Pi 21

Oracle-Java Fluff / Raspberry Pi with Java: Programming the Internet of Things / Stephen Chin / 201-2 / Chapter 1

Then you can perform an upgrade of your Raspberry Pi distribution by
using this additional command:

sudo apt-get upgrade

Depending upon how old the NOOBS distribution you originally used was,
and how fast your network connection and SD card are, this could take quite a
while. This might be a good opportunity to brew another cup of coffee.

Setting Up a Hostname
If your Raspberry Pi gets its IP address from DHCP, the address can change on
every reboot. If you are running the Raspberry Pi headless (without a monitor
or display), this can make it a chore to search for the new IP address. A good
alternative is to use Bonjour/Zeroconf, which broadcasts your hostname over
multicast. This way you can refer to your Raspberry Pi as raspberrypi.local
(or, in general, hostname.local) from anywhere on your local network.

The first step is to set a unique hostname. This can be done from the
Advanced Options in the Raspberry Pi configuration utility. To bring up the
configuration utility from the command line, type the following:

sudo raspi-config

After setting the hostname, you will be asked to reboot the Pi to update the
network configuration. After reboot, you can install Bonjour on the Raspberry
Pi by running the following command:

sudo apt-get install libnss-mdns

After this command completes, you are ready to access the Pi on the
network. From any computer on the same network where multicast packets
reach, you can replace the IP address of your Pi with hostname.local. For
example, Listing 1-2 shows the output of pinging my Raspberry Pi with
hostname nighthackingpi.

Listing 1-2 Pinging nighthackingpi via Bonjour

NightHacking-Presenter:~ sjc$ ping nighthackingpi.local
PING nighthackingpi.local (192.168.1.10): 56 data bytes
64 bytes from 192.168.1.10: icmp_seq=0 ttl=64 time=76.379 ms
64 bytes from 192.168.1.10: icmp_seq=1 ttl=64 time=93.390 ms

01-ch01.indd 21 24/09/15 12:03 PM

 22 Raspberry Pi with Java: Programming the Internet of Things

Oracle-Java Fluff / Raspberry Pi with Java: Programming the Internet of Things / Stephen Chin / 201-2 / Chapter 1

Notice that it automatically translates from the hostname to an IP address
of 192.168.1.10. However, if this address changed in the future, I could use the
same command to access my Pi.

Bonjour is installed by default on OS X and Ubuntu Linux. If you are running
on Windows, you already have Bonjour installed if you have previously installed
iTunes. Otherwise, the easiest way to get it is to install Bonjour Print Services for
Windows from Apple: http://support.apple.com/kb/DL999.

Connecting to Your Raspberry Pi with SSH
Using an SSH client from your computer is a convenient and secure way of
interacting with your Raspberry Pi. Once you have networking configured
on both machines, this is as simple as connecting with the hostname or
IP address.

For Unix or OS X you can simply use a terminal window and the version
of SSH that ships with your operating system. Figure 1-11 shows an example
of an SSH login from an OS X computer.

FIGURE 1-11. SSH from OS X

01-ch01.indd 22 24/09/15 12:03 PM

http://support.apple.com/kb/DL999

 Chapter 1: Baking Pi 23

Oracle-Java Fluff / Raspberry Pi with Java: Programming the Internet of Things / Stephen Chin / 201-2 / Chapter 1

To connect via SSH on the command line, simply issue the following
ssh command:

ssh user@hostname

where “user” is your username (most likely, pi) and “hostname” is your Pi’s
network name or IP address (for example, 192.168.0.2).

If this is the first time you are connecting, you may be asked to verify the
RSA key fingerprint. This is a security measure to ensure that the device to
which you are creating an encrypted connection is in fact the device you
intended to communicate with. If your network has been compromised (or
you are on a public network), then it is possible for someone to launch a
man-in-the-middle attack and spoof as your device.

To verify the RSA key fingerprint, physically log on to the Raspberry Pi and
type the following command:

ssh-keygen -l -f /etc/ssh/ssh_host_rsa_key.pub

This returns a fingerprint that you can verify against the one returned by
the SSH tunnel, which will look something like the following:

2048 0c:b4:c5:3c:1c:2b:8e:ef:fe:97:26:18:a1:33:1b:bf root@raspberrypi (RSA)

CAUTION
Checking the RSA key fingerprint after logging on
to the Raspberry Pi is as good as not checking at
all. Once someone else has established a man-in-
the-middle attack, they can simply intercept the
command and return a matching fingerprint.

Now that the connection has been established as secure, SSH will ask for
your password. Once authenticated, you can issue commands just as if you
were physically at the keyboard. This is often more convenient, and it lets
you interact with a headless Raspberry Pi to do redeployment, diagnostics,
or troubleshooting.

On Windows you will have to install an SSH client yourself. A well-known
and free SSH client is PuTTY, which is maintained by a small team based in
Cambridge, England. You can find the PuTTY downloads here: www.chiark
.greenend.org.uk/~sgtatham/putty/download.html.

01-ch01.indd 23 24/09/15 12:03 PM

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

 24 Raspberry Pi with Java: Programming the Internet of Things

Oracle-Java Fluff / Raspberry Pi with Java: Programming the Internet of Things / Stephen Chin / 201-2 / Chapter 1

The initial configuration screen of PuTTY is shown in Figure 1-12. Simply
enter the IP address or hostname of your Raspberry Pi, make sure SSH is
selected, and click Open. This will start a secure connection that prompts you
to verify the RSA key fingerprint (as just discussed) and then lets you connect
with your username and password.

Creating a Simple
Raspberry Pi Application
Now that you have a convenient SSH prompt to access your Raspberry
Pi, you are ready to try running Java remotely. In the next chapter you will
install a full-featured integrated development environment (IDE) to speed
up development, but for this simple HelloRaspberryPi application, it is
easy enough to type it in on the command line.

FIGURE 1-12. PuTTY SSH client for Windows

01-ch01.indd 24 24/09/15 12:03 PM

 Chapter 1: Baking Pi 25

Oracle-Java Fluff / Raspberry Pi with Java: Programming the Internet of Things / Stephen Chin / 201-2 / Chapter 1

To create the application, you use the echo and append (>) commands to
generate a simple Java class. Listing 1-3 shows the commands (in bold) you
type into the SSH sessions.

Listing 1-3 Creation of the HelloRaspberryPi class

pi@nighthackingpi ~ $ echo "class HelloRaspberryPi {
> public static void main(String[] args) {
> System.out.println(\"Hello Raspberry Pi\");
> }
> }" > HelloRaspberryPi.java

Notice that you can continue a command within quotation marks on the
next line simply by pressing enter. The command prompt (>) on each line
is automatically typed by the system, and in this example I used spaces for
indentation. The only other difference from normal Java code is that the double
quotes (" ") need to be escaped with a preceding backslash (\).

The last line writes this application to a file called HelloRaspberryPi.java that
you can compile by using javac with the following command:

pi@nighthackingpi ~ $ javac HelloRaspberryPi.java

Executing the application is as simple as running java in the same
directory with the main class name:

pi@nighthackingpi ~ $ java HelloRaspberryPi

My shell console is shown in Figure 1-13 along with the output of the program.

FIGURE 1-13. Output of the HelloRaspberryPi application

01-ch01.indd 25 24/09/15 12:03 PM

 26 Raspberry Pi with Java: Programming the Internet of Things

Oracle-Java Fluff / Raspberry Pi with Java: Programming the Internet of Things / Stephen Chin / 201-2 / Chapter 1

Congratulations on setting up your first Raspberry Pi and running a
simple Java application on it! The work you completed in this chapter on
hardware, configuration, and networking has set the foundation for the rest
of your Raspberry Pi projects. In the next chapter we will explore the visual
capabilities of the Raspberry Pi and set up a full Java IDE to streamline
future projects.

01-ch01.indd 26 24/09/15 12:03 PM

Use if and switch Statements •
Develop for, do, and while Loops •
Use break and continue Statements •
Use try, catch, and finally Statements •

State the Effects of Exceptions •
Recognize Common Exceptions •
Two-Minute Drill ✓

Q&A Self Test

66
Flow Control Flow Control
and Exceptionsand Exceptions

CERTIFICATION OBJECTIVES

06-ch06.indd 307 8/28/2014 4:10:51 PM

308 Chapter 6: Flow Control and Exceptions

Can you imagine trying to write code using a language that didn't give you a way to
execute statements conditionally? Flow control is a key part of most any useful
programming language, and Java offers several ways to accomplish it. Some statements,

such as if statements and for loops, are common to most languages. But Java also throws in a
couple of flow control features you might not have used before—exceptions and assertions. (We'll
discuss assertions in the next chapter.)

The if statement and the switch statement are types of conditional/decision
controls that allow your program to behave differently at a "fork in the road,"
depending on the result of a logical test. Java also provides three different looping
constructs—for, while, and do—so you can execute the same code over and over
again depending on some condition being true. Exceptions give you a clean, simple
way to organize code that deals with problems that might crop up at runtime.

With these tools, you can build a robust program that can handle any logical
situation with grace. Expect to see a wide range of questions on the exam that
include flow control as part of the question code, even on questions that aren't
testing your knowledge of flow control.

CERTIFICATION OBJECTIVE

Using if and switch Statements (OCA Objectives
3.4 and 3.5—also Upgrade Objective 1.1)

3.4 Create if and if-else constructs.

3.5 Use a switch statement.

The if and switch statements are commonly referred to as decision statements.
When you use decision statements in your program, you're asking the program to
evaluate a given expression to determine which course of action to take. We'll look
at the if statement first.

if-else Branching

The basic format of an if statement is as follows:

06-ch06.indd 308 8/28/2014 4:10:55 PM

 Using if and switch Statements (OCA Objectives 3.4 and 3.5—also Upgrade Objective 1.1) 309

if (booleanExpression) {
 System.out.println("Inside if statement");
}

The expression in parentheses must evaluate to (a boolean) true or false.
Typically you're testing something to see if it's true, and then running a code block
(one or more statements) if it is true and (optionally) another block of code if it
isn't. The following code demonstrates a legal if-else statement:

if (x > 3) {
 System.out.println("x is greater than 3");
} else {
 System.out.println("x is not greater than 3");
}

The else block is optional, so you can also use the following:

if (x > 3) {
 y = 2;
}
z += 8;
a = y + x;

The preceding code will assign 2 to y if the test succeeds (meaning x really is greater
than 3), but the other two lines will execute regardless. Even the curly braces are
optional if you have only one statement to execute within the body of the conditional
block. The following code example is legal (although not recommended for readability):

if (x > 3) // bad practice, but seen on the exam
 y = 2;
z += 8;
a = y + x;

Most developers consider it good practice to enclose blocks within curly braces,
even if there's only one statement in the block. Be careful with code like the
preceding, because you might think it should read as

"If x is greater than 3, then set y to 2, z to z + 8, and a to y + x."
But the last two lines are going to execute no matter what! They aren't part of the
conditional flow. You might find it even more misleading if the code were indented
as follows:

if (x > 3)
 y = 2;
 z += 8;
 a = y + x;

You might have a need to nest if-else statements (although, again, it's not
recommended for readability, so nested if tests should be kept to a minimum). You
can set up an if-else statement to test for multiple conditions. The following

06-ch06.indd 309 8/28/2014 4:10:55 PM

310 Chapter 6: Flow Control and Exceptions

example uses two conditions so that if the first test fails, we want to perform a
second test before deciding what to do:

if (price < 300) {
 buyProduct();
} else {
 if (price < 400) {
 getApproval();
 }
 else {
 dontBuyProduct();
 }
}

This brings up the other if-else construct, the if, else if, else. The preceding
code could (and should) be rewritten like this:

if (price < 300) {
 buyProduct();
} else if (price < 400) {
 getApproval();
} else {
 dontBuyProduct();
}

There are a couple of rules for using else and else if:

■ You can have zero or one else for a given if, and it must come after any
else ifs.

■ You can have zero to many else ifs for a given if and they must come
before the (optional) else.

■ Once an else if succeeds, none of the remaining else ifs nor the else
will be tested.

The following example shows code that is horribly formatted for the real world.
As you've probably guessed, it's fairly likely that you'll encounter formatting like this
on the exam. In any case, the code demonstrates the use of multiple else ifs:

int x = 1;
if (x == 3) { }
else if (x < 4) {System.out.println("<4"); }
else if (x < 2) {System.out.println("<2"); }
else { System.out.println("else"); }

It produces this output:

<4

(Notice that even though the second else if is true, it is never reached.)

06-ch06.indd 310 8/28/2014 4:10:55 PM

 Using if and switch Statements (OCA Objectives 3.4 and 3.5—also Upgrade Objective 1.1) 311

Sometimes you can have a problem figuring out which if your else should pair
with, as follows:

if (exam.done())
if (exam.getScore() < 0.61)
System.out.println("Try again.");
// Which if does this belong to?
else System.out.println("Java master!");

We intentionally left out the indenting in this piece of code so it doesn't give clues
as to which if statement the else belongs to. Did you figure it out? Java law decrees
that an else clause belongs to the innermost if statement to which it might
possibly belong (in other words, the closest preceding if that doesn't have an else).
In the case of the preceding example, the else belongs to the second if statement
in the listing. With proper indenting, it would look like this:

if (exam.done())
 if (exam.getScore() < 0.61)
 System.out.println("Try again.");
 // Which if does this belong to?
 else
 System.out.println("Java master!");

Following our coding conventions by using curly braces, it would be even easier
to read:

if (exam.done()) {
 if (exam.getScore() < 0.61) {
 System.out.println("Try again.");
 // Which if does this belong to?
 } else {
 System.out.println("Java master!");
 }
}

Don't get your hopes up about the exam questions being all nice and indented
properly. Some exam takers even have a slogan for the way questions are presented
on the exam: Anything that can be made more confusing, will be.

Be prepared for questions that not only fail to indent nicely, but intentionally
indent in a misleading way. Pay close attention for misdirection like the following:

if (exam.done())
 if (exam.getScore() < 0.61)
 System.out.println("Try again.");
else
 System.out.println("Java master!"); // Hmmmmm… now where does
 // it belong?

Of course, the preceding code is exactly the same as the previous two examples,
except for the way it looks.

06-ch06.indd 311 8/28/2014 4:10:55 PM

312 Chapter 6: Flow Control and Exceptions

Legal Expressions for if Statements

The expression in an if statement must be a boolean expression. Any expression
that resolves to a boolean is fine, and some of the expressions can be complex.
Assume doStuff() returns true,

int y = 5;
int x = 2;
if (((x > 3) && (y < 2)) | doStuff()) {
 System.out.println("true");
}

which prints

true

You can read the preceding code as, "If both (x > 3) and (y < 2) are true, or if the
result of doStuff() is true, then print true." So, basically, if just doStuff() alone
is true, we'll still get true. If doStuff() is false, though, then both (x > 3) and
(y < 2) will have to be true in order to print true. The preceding code is even
more complex if you leave off one set of parentheses as follows:

int y = 5;
int x = 2;
if ((x > 3) && (y < 2) | doStuff()) {
 System.out.println("true");
}

This now prints…nothing! Because the preceding code (with one less set of
parentheses) evaluates as though you were saying, "If (x > 3) is true, and either (y
< 2) or the result of doStuff() is true, then print true. So if (x > 3) is not true,
no point in looking at the rest of the expression." Because of the short-circuit &&,
the expression is evaluated as though there were parentheses around (y < 2) |
doStuff(). In other words, it is evaluated as a single expression before the && and a
single expression after the &&.

Remember that the only legal expression in an if test is a boolean. In some
languages, 0 == false, and 1 == true. Not so in Java! The following code shows if
statements that might look tempting but are illegal, followed by legal substitutions:

int trueInt = 1;
int falseInt = 0;
if (trueInt) // illegal
if (trueInt == true) // illegal
if (1) // illegal
if (falseInt == false) // illegal
if (trueInt == 1) // legal
if (falseInt == 0) // legal

06-ch06.indd 312 8/28/2014 4:10:55 PM

 Using if and switch Statements (OCA Objectives 3.4 and 3.5—also Upgrade Objective 1.1) 313

switch Statements (OCA, OCP, and Upgrade Topic)

You've seen how if and else-if statements can be used to support both simple and
complex decision logic. In many cases, the switch statement provides a cleaner way
to handle complex decision logic. Let's compare the following if-else if statement
to the equivalently performing switch statement:

int x = 3;
if(x == 1) {
 System.out.println("x equals 1");
}
else if(x == 2) {
 System.out.println("x equals 2");
}
else {
 System.out.println("No idea what x is");
}

One common mistake programmers make (and that can be diffi cult to

spot), is assigning a boolean variable when you meant to test a boolean variable. Look

out for code like the following:

boolean boo = false;
if (boo = true) { }

You might think one of three things:

 The code compiles and runs fi ne, and the 1. if test fails because boo is false.

 The code won't compile because you're using an assignment (2. =) rather than an

equality test (==).

 The code compiles and runs fi ne, and the 3. if test succeeds because boo is SET to

true (rather than TESTED for true) in the if argument!

Well, number 3 is correct—pointless, but correct. Given that the result of any assignment

is the value of the variable after the assignment, the expression (boo = true) has a

result of true. Hence, the if test succeeds. But the only variables that can be assigned

(rather than tested against something else) are a boolean or a Boolean; all other

assignments will result in something non-boolean, so they're not legal, as in the following:

int x = 3;
if (x = 5) { } // Won't compile because x is not a boolean!

Because if tests require boolean expressions, you need to be really solid on both logical

operators and if test syntax and semantics.

06-ch06.indd 313 8/28/2014 4:10:55 PM

314 Chapter 6: Flow Control and Exceptions

Now let's see the same functionality represented in a switch construct:

int x = 3;
switch (x) {
 case 1:
 System.out.println("x equals 1");
 break;
 case 2:
 System.out.println("x equals 2");
 break;
 default:
 System.out.println("No idea what x is");
}

Note: The reason this switch statement emulates the if is because of the break
statements that were placed inside of the switch. In general, break statements are
optional, and as you will see in a few pages, their inclusion or exclusion causes huge
changes in how a switch statement will execute.

Legal Expressions for switch and case

The general form of the switch statement is

switch (expression) {
 case constant1: code block
 case constant2: code block
 default: code block
}

A switch's expression must evaluate to a char, byte, short, int, an enum (as of
Java 5), and a String (as of Java 7). That means if you're not using an enum or a
String, only variables and values that can be automatically promoted (in other
words, implicitly cast) to an int are acceptable. You won't be able to compile if you
use anything else, including the remaining numeric types of long, float, and
double.

Note: For OCA candidates, enums are not covered on your exam, and you won't
encounter any questions related to switch statements that use enums.

A case constant must evaluate to the same type that the switch expression can
use, with one additional—and big—constraint: the case constant must be a
compile-time constant! Since the case argument has to be resolved at compile time,
you can use only a constant or final variable that is immediately initialized with a
literal value. It is not enough to be final; it must be a compile time constant. Here's
an example:

06-ch06.indd 314 8/28/2014 4:10:55 PM

 Using if and switch Statements (OCA Objectives 3.4 and 3.5—also Upgrade Objective 1.1) 315

final int a = 1;
final int b;
b = 2;
int x = 0;
switch (x) {
 case a: // ok
 case b: // compiler error

Also, the switch can only check for equality. This means that the other relational
operators such as greater than are rendered unusable in a case. The following is an
example of a valid expression using a method invocation in a switch statement.
Note that for this code to be legal, the method being invoked on the object
reference must return a value compatible with an int.

String s = "xyz";
switch (s.length()) {
 case 1:
 System.out.println("length is one");
 break;
 case 2:
 System.out.println("length is two");
 break;
 case 3:
 System.out.println("length is three");
 break;
 default:
 System.out.println("no match");
}

One other rule you might not expect involves the question, "What happens if I
switch on a variable smaller than an int?" Look at the following switch:

byte g = 2;
switch(g) {
 case 23:
 case 128:
}

This code won't compile. Although the switch argument is legal—a byte is
implicitly cast to an int—the second case argument (128) is too large for a byte,
and the compiler knows it! Attempting to compile the preceding example gives you
an error something like this:

Test.java:6: possible loss of precision
found : int
required: byte
 case 128:
 ^

06-ch06.indd 315 8/28/2014 4:10:55 PM

316 Chapter 6: Flow Control and Exceptions

It's also illegal to have more than one case label using the same value. For
example, the following block of code won't compile because it uses two cases with
the same value of 80:

int temp = 90;
switch(temp) {
 case 80 : System.out.println("80");
 case 80 : System.out.println("80"); // won't compile!
 case 90 : System.out.println("90");
 default : System.out.println("default");
}

It is legal to leverage the power of boxing in a switch expression. For instance,
the following is legal:

switch(new Integer(4)) {
 case 4: System.out.println("boxing is OK");
}

Look for any violation of the rules for switch and case arguments. For

example, you might fi nd illegal examples like the following snippets:

switch(x) {
 case 0 {
 y = 7;
 }
}

switch(x) {
 0: { }
 1: { }
}

In the fi rst example, the case uses a curly brace and omits the colon. The second example

omits the keyword case.

An Intro to String "equality"

As we've been discussing, the operation of switch statements depends on the
expression "matching" or being "equal" to one of the cases. We've talked about how
we know when primitives are equal, but what does it mean for objects to be equal?
This is another one of those surprisingly tricky topics, and for those of you who

06-ch06.indd 316 8/28/2014 4:10:55 PM

 Using if and switch Statements (OCA Objectives 3.4 and 3.5—also Upgrade Objective 1.1) 317

intend to take the OCP exam, we'll spend a lot of time discussing "object equality"
in Part II. For you OCA candidates, all you have to know is that for a switch
statement, two Strings will be considered "equal" if they have the same case-
sensitive sequence of characters. For example, in the following partial switch
statement, the expression would match the case:

String s = "Monday";
switch(s) {
 case "Monday": // matches!

But the following would NOT match:

String s = "MONDAY";
switch(s) {
 case "Monday": // Strings are case-sensitive, DOES NOT match

Break and Fall-Through in switch Blocks

We're finally ready to discuss the break statement and offer more details about flow
control within a switch statement. The most important thing to remember about
the flow of execution through a switch statement is this:

case constants are evaluated from the top down, and the first case constant that
matches the switch's expression is the execution entry point.

In other words, once a case constant is matched, the Java Virtual Machine (JVM)
will execute the associated code block and ALL subsequent code blocks (barring a
break statement) too! The following example uses a String in a case statement:

class SwitchString {
 public static void main(String [] args) {
 String s = "green";
 switch(s) {
 case "red": System.out.print("red ");
 case "green": System.out.print("green ");
 case "blue": System.out.print("blue ");
 default: System.out.println("done");
 }
 }
}

In this example case "green": matched, so the JVM executed that code block and
all subsequent code blocks to produce the output:

green blue done

Again, when the program encounters the keyword break during the execution of
a switch statement, execution will immediately move out of the switch block to

06-ch06.indd 317 8/28/2014 4:10:55 PM

318 Chapter 6: Flow Control and Exceptions

the next statement after the switch. If break is omitted, the program just keeps
executing the remaining case blocks until either a break is found or the switch
statement ends. Examine the following code:

int x = 1;
switch(x) {
 case 1: System.out.println("x is one");
 case 2: System.out.println("x is two");
 case 3: System.out.println("x is three");
}
System.out.println("out of the switch");

The code will print the following:

x is one
x is two
x is three
out of the switch

This combination occurs because the code didn't hit a break statement;
execution just kept dropping down through each case until the end. This dropping
down is actually called "fall-through," because of the way execution falls from one
case to the next. Remember, the matching case is simply your entry point into the
switch block! In other words, you must not think of it as, "Find the matching case,
execute just that code, and get out." That's not how it works. If you do want that
"just the matching code" behavior, you'll insert a break into each case as follows:

int x = 1;
switch(x) {
 case 1: {
 System.out.println("x is one"); break;
 }
 case 2: {
 System.out.println("x is two"); break;
 }
 case 3: {
 System.out.println("x is two"); break;
 }
}
System.out.println("out of the switch");

Running the preceding code, now that we've added the break statements, will print this:

x is one
out of the switch

And that's it. We entered into the switch block at case 1. Because it matched the
switch() argument, we got the println statement and then hit the break and
jumped to the end of the switch.

06-ch06.indd 318 8/28/2014 4:10:55 PM

 Using if and switch Statements (OCA Objectives 3.4 and 3.5—also Upgrade Objective 1.1) 319

An interesting example of this fall-through logic is shown in the following code:

int x = someNumberBetweenOneAndTen;

switch (x) {
 case 2:
 case 4:
 case 6:
 case 8:
 case 10: {
 System.out.println("x is an even number"); break;
 }
}

This switch statement will print x is an even number or nothing, depending on
whether the number is between one and ten and is odd or even. For example, if x is
4, execution will begin at case 4, but then fall down through 6, 8, and 10, where it
prints and then breaks. The break at case 10, by the way, is not needed; we're
already at the end of the switch anyway.

Note: Because fall-through is less than intuitive, Oracle recommends that you add
a comment such as // fall through when you use fall-through logic.

The Default Case

What if, using the preceding code, you wanted to print x is an odd number if
none of the cases (the even numbers) matched? You couldn't put it after the
switch statement, or even as the last case in the switch, because in both of those
situations it would always print x is an odd number. To get this behavior, you'd
use the default keyword. (By the way, if you've wondered why there is a default
keyword even though we don't use a modifier for default access control, now you'll
see that the default keyword is used for a completely different purpose.) The only
change we need to make is to add the default case to the preceding code:

int x = someNumberBetweenOneAndTen;

switch (x) {
 case 2:
 case 4:
 case 6:
 case 8:
 case 10: {
 System.out.println("x is an even number");
 break;
 }
 default: System.out.println("x is an odd number");
}

06-ch06.indd 319 8/28/2014 4:10:55 PM

320 Chapter 6: Flow Control and Exceptions

EXERCISE 6-1

Creating a switch-case Statement

Try creating a switch statement using a char value as the case. Include a default
behavior if none of the char values match.

The default case doesn't have to come at the end of the switch. Look

for it in strange places such as the following:

int x = 2;
switch (x) {
 case 2: System.out.println("2");
 default: System.out.println("default");
 case 3: System.out.println("3");
 case 4: System.out.println("4");
}

Running the preceding code prints this:

2
default
3
4

And if we modify it so that the only match is the default case, like this,

int x = 7;
switch (x) {
 case 2: System.out.println("2");
 default: System.out.println("default");
 case 3: System.out.println("3");
 case 4: System.out.println("4");
}

then running the preceding code prints this:

default
3
4

The rule to remember is that default works just like any other case for fall-through!

06-ch06.indd 320 8/28/2014 4:10:55 PM

Creating Loops Constructs (OCA Objectives 5.1, 5.2, 5.3, 5.4, and 5.5) 321

■ Make sure a char variable is declared before the switch statement.

■ Each case statement should be followed by a break.

■ The default case can be located at the end, middle, or top.

CERTIFICATION OBJECTIVE

Creating Loops Constructs
(OCA Objectives 5.1, 5.2, 5.3, 5.4, and 5.5)

5.1 Create and use while loops.

5.2 Create and use for loops including the enhanced for loop.

5.3 Create and use do/while loops.

5.4 Compare loop constructs.

5.5 Use break and continue.

Java loops come in three flavors: while, do, and for (and as of Java 5, the for
loop has two variations). All three let you repeat a block of code as long as some
condition is true, or for a specific number of iterations. You're probably familiar with
loops from other languages, so even if you're somewhat new to Java, these won't be a
problem to learn.

Using while Loops

The while loop is good when you don't know how many times a block or statement
should repeat, but you want to continue looping as long as some condition is true. A
while statement looks like this:

while (expression) {
 // do stuff
}

06-ch06.indd 321 8/28/2014 4:10:55 PM

322 Chapter 6: Flow Control and Exceptions

Or this:

int x = 2;
while(x == 2) {
 System.out.println(x);
 ++x;
}

In this case, as in all loops, the expression (test) must evaluate to a boolean
result. The body of the while loop will execute only if the expression (sometimes
called the "condition") results in a value of true. Once inside the loop, the loop
body will repeat until the condition is no longer met because it evaluates to false.
In the previous example, program control will enter the loop body because x is equal
to 2. However, x is incremented in the loop, so when the condition is checked again
it will evaluate to false and exit the loop.

Any variables used in the expression of a while loop must be declared before the
expression is evaluated. In other words, you can't say this:

while (int x = 2) { } // not legal

Then again, why would you? Instead of testing the variable, you'd be declaring and
initializing it, so it would always have the exact same value. Not much of a test
condition!

The key point to remember about a while loop is that it might not ever run. If
the test expression is false the first time the while expression is checked, the loop
body will be skipped and the program will begin executing at the first statement after
the while loop. Look at the following example:

int x = 8;
while (x > 8) {
 System.out.println("in the loop");
 x = 10;
}
System.out.println("past the loop");

Running this code produces

past the loop

Because the expression (x > 8) evaluates to false, none of the code within the
while loop ever executes.

06-ch06.indd 322 8/28/2014 4:10:55 PM

 Creating Loops Constructs (OCA Objectives 5.1, 5.2, 5.3, 5.4, and 5.5) 323

Using do Loops

The do loop is similar to the while loop, except that the expression is not evaluated
until after the do loop's code is executed. Therefore, the code in a do loop is
guaranteed to execute at least once. The following shows a do loop in action:

do {
 System.out.println("Inside loop");
} while(false);

The System.out.println() statement will print once, even though the expression
evaluates to false. Remember, the do loop will always run the code in the loop
body at least once. Be sure to note the use of the semicolon at the end of the while
expression.

As with if tests, look for while loops (and the while test in a do loop)

with an expression that does not resolve to a boolean. Take a look at the following

examples of legal and illegal while expressions:

int x = 1;
while (x) { } // Won't compile; x is not a boolean
while (x = 5) { } // Won't compile; resolves to 5
 // (as the result of assignment)
while (x == 5) { } // Legal, equality test
while (true) { } // Legal

Using for Loops

As of Java 5, the for loop took on a second structure. We'll call the old style of for
loop the "basic for loop," and we'll call the new style of for loop the "enhanced
for loop" (it's also sometimes called the for-each). Depending on what documentation
you use, you'll see both terms, along with for-in. The terms for-in, for-each,
and "enhanced for" all refer to the same Java construct.

The basic for loop is more flexible than the enhanced for loop, but the enhanced
for loop was designed to make iterating through arrays and collections easier to code.

06-ch06.indd 323 8/28/2014 4:10:55 PM

324 Chapter 6: Flow Control and Exceptions

The Basic for Loop

The for loop is especially useful for flow control when you already know how many
times you need to execute the statements in the loop's block. The for loop
declaration has three main parts, besides the body of the loop:

■ Declaration and initialization of variables

■ The boolean expression (conditional test)

■ The iteration expression

The three for declaration parts are separated by semicolons. The following two
examples demonstrate the for loop. The first example shows the parts of a for loop
in a pseudocode form, and the second shows a typical example of a for loop:

for (/*Initialization*/ ; /*Condition*/ ; /* Iteration */) {
 /* loop body */
}

for (int i = 0; i<10; i++) {
 System.out.println("i is " + i);
}

The Basic for Loop: Declaration and Initialization

The first part of the for statement lets you declare and initialize zero, one, or
multiple variables of the same type inside the parentheses after the for keyword. If
you declare more than one variable of the same type, you'll need to separate them
with commas as follows:

for (int x = 10, y = 3; y > 3; y++) { }

The declaration and initialization happens before anything else in a for loop. And
whereas the other two parts—the boolean test and the iteration expression—will
run with each iteration of the loop, the declaration and initialization happens just
once, at the very beginning. You also must know that the scope of variables declared
in the for loop ends with the for loop! The following demonstrates this:

for (int x = 1; x < 2; x++) {
 System.out.println(x); // Legal
}
System.out.println(x); // Not Legal! x is now out of scope
 // and can't be accessed.

06-ch06.indd 324 8/28/2014 4:10:55 PM

 Creating Loops Constructs (OCA Objectives 5.1, 5.2, 5.3, 5.4, and 5.5) 325

If you try to compile this, you'll get something like this:

Test.java:19: cannot resolve symbol
symbol : variable x
location: class Test
 System.out.println(x);
 ^

Basic for Loop: Conditional (boolean) Expression

The next section that executes is the conditional expression, which (like all other
conditional tests) must evaluate to a boolean value. You can have only one logical
expression, but it can be very complex. Look out for code that uses logical
expressions like this:

for (int x = 0; ((((x < 10) && (y-- > 2)) | x == 3)); x++) { }

The preceding code is legal, but the following is not:

for (int x = 0; (x > 5), (y < 2); x++) { } // too many
 // expressions

The compiler will let you know the problem:

TestLong.java:20: ';' expected
for (int x = 0; (x > 5), (y < 2); x++) { }
 ^

The rule to remember is this: You can have only one test expression.
In other words, you can't use multiple tests separated by commas, even though

the other two parts of a for statement can have multiple parts.

Basic for Loop: Iteration Expression

After each execution of the body of the for loop, the iteration expression is
executed. This is where you get to say what you want to happen with each iteration
of the loop. Remember that it always happens after the loop body runs! Look at the
following:

for (int x = 0; x < 1; x++) {
 // body code that doesn't change the value of x
}

This loop executes just once. The first time into the loop, x is set to 0, then x is
tested to see if it's less than 1 (which it is), and then the body of the loop executes.
After the body of the loop runs, the iteration expression runs, incrementing x by 1.

06-ch06.indd 325 8/28/2014 4:10:55 PM

326 Chapter 6: Flow Control and Exceptions

Next, the conditional test is checked, and since the result is now false, execution
jumps to below the for loop and continues on.

Keep in mind that barring a forced exit, evaluating the iteration expression and
then evaluating the conditional expression are always the last two things that
happen in a for loop!

Examples of forced exits include a break, a return, a System.exit(), and an
exception, which will all cause a loop to terminate abruptly, without running the
iteration expression. Look at the following code:

static boolean doStuff() {
 for (int x = 0; x < 3; x++) {
 System.out.println("in for loop");
 return true;
 }
 return true;
}

Running this code produces

in for loop

The statement prints only once, because a return causes execution to leave not
just the current iteration of a loop, but the entire method. So the iteration expression
never runs in that case. Table 6-1 lists the causes and results of abrupt loop termination.

 TABLE 6-1

Causes of Early
Loop Termination

Code in Loop What Happens

break Execution jumps immediately to the first statement after the
for loop.

return Execution jumps immediately back to the calling method.
System.exit() All program execution stops; the VM shuts down.

Basic for Loop: for Loop Issues

None of the three sections of the for declaration are required! The following
example is perfectly legal (although not necessarily good practice):

for(; ;) {
 System.out.println("Inside an endless loop");
}

In this example, all the declaration parts are left out, so the for loop will act like an
endless loop.

06-ch06.indd 326 8/28/2014 4:10:55 PM

 Creating Loops Constructs (OCA Objectives 5.1, 5.2, 5.3, 5.4, and 5.5) 327

For the exam, it's important to know that with the absence of the initialization
and increment sections, the loop will act like a while loop. The following example
demonstrates how this is accomplished:

int i = 0;

for (;i<10;) {
 i++;
 // do some other work
}

The next example demonstrates a for loop with multiple variables in play. A
comma separates the variables, and they must be of the same type. Remember that
the variables declared in the for statement are all local to the for loop and can't be
used outside the scope of the loop.

for (int i = 0,j = 0; (i<10) && (j<10); i++, j++) {
 System.out.println("i is " + i + " j is " +j);
}

Variable scope plays a large role in the exam. You need to know that a

variable declared in the for loop can't be used beyond the for loop. But a variable only

initialized in the for statement (but declared earlier) can be used beyond the loop. For

example, the following is legal:

int x = 3;
for (x = 12; x < 20; x++) { }
System.out.println(x);

But this is not:

for (int x = 3; x < 20; x++) { } System.out.println(x);

The last thing to note is that all three sections of the for loop are independent of
each other. The three expressions in the for statement don't need to operate on the
same variables, although they typically do. But even the iterator expression, which
many mistakenly call the "increment expression," doesn't need to increment or set

06-ch06.indd 327 8/28/2014 4:10:55 PM

328 Chapter 6: Flow Control and Exceptions

anything; you can put in virtually any arbitrary code statements that you want to
happen with each iteration of the loop. Look at the following:

int b = 3;
for (int a = 1; b != 1; System.out.println("iterate")) {
 b = b - a;
}

The preceding code prints

iterate
iterate

Many questions in the Java 7 exams list "Compilation fails" and "An

exception occurs at runtime" as possible answers. This makes them more diffi cult,

because you can't simply work through the behavior of the code. You must fi rst make sure

the code isn't violating any fundamental rules that will lead to a compiler error, and then

look for possible exceptions. Only after you've satisfi ed those two should you dig into the

logic and fl ow of the code in the question.

The Enhanced for Loop (for Arrays)

The enhanced for loop, new as of Java 5, is a specialized for loop that simplifies
looping through an array or a collection. In this chapter we're going to focus on
using the enhanced for to loop through arrays. In Chapter 11 we'll revisit the
enhanced for as we discuss collections—where the enhanced for really comes into
its own.

Instead of having three components, the enhanced for has two. Let's loop
through an array the basic (old) way, and then using the enhanced for:

int [] a = {1,2,3,4};
for(int x = 0; x < a.length; x++) // basic for loop
 System.out.print(a[x]);
for(int n : a) // enhanced for loop
 System.out.print(n);

This produces the following output:

12341234

06-ch06.indd 328 8/28/2014 4:10:55 PM

 Creating Loops Constructs (OCA Objectives 5.1, 5.2, 5.3, 5.4, and 5.5) 329

More formally, let's describe the enhanced for as follows:

for(declaration : expression)

The two pieces of the for statement are

■ declaration The newly declared block variable, of a type compatible with
the elements of the array you are accessing. This variable will be available
within the for block, and its value will be the same as the current array
element.

■ expression This must evaluate to the array you want to loop through.
This could be an array variable or a method call that returns an array. The
array can be any type: primitives, objects, or even arrays of arrays.

Using the preceding definitions, let's look at some legal and illegal enhanced for
declarations:

int x;
long x2;
long [] la = {7L, 8L, 9L};
int [][] twoDee = {{1,2,3}, {4,5,6}, {7,8,9}};
String [] sNums = {"one", "two", "three"};
Animal [] animals = {new Dog(), new Cat()};

// legal 'for' declarations
for(long y : la) ; // loop thru an array of longs
for(int[] n : twoDee) ; // loop thru the array of arrays
for(int n2 : twoDee[2]) ; // loop thru the 3rd sub-array
for(String s : sNums) ; // loop thru the array of Strings
for(Object o : sNums) ; // set an Object reference to
 // each String
for(Animal a : animals) ; // set an Animal reference to each
 // element

// ILLEGAL 'for' declarations
for(x2 : la) ; // x2 is already declared
for(int x2 : twoDee) ; // can't stuff an array into an int
for(int x3 : la) ; // can't stuff a long into an int
for(Dog d : animals) ; // you might get a Cat!

The enhanced for loop assumes that, barring an early exit from the loop, you'll
always loop through every element of the array. The following discussions of break
and continue apply to both the basic and enhanced for loops.

06-ch06.indd 329 8/28/2014 4:10:55 PM

330 Chapter 6: Flow Control and Exceptions

Using break and continue

The break and continue keywords are used to stop either the entire loop (break)
or just the current iteration (continue). Typically, if you're using break or
continue, you'll do an if test within the loop, and if some condition becomes true
(or false depending on the program), you want to get out immediately. The
difference between them is whether or not you continue with a new iteration or
jump to the first statement below the loop and continue from there.

Remember, continue statements must be inside a loop; otherwise, you'll

get a compiler error. break statements must be used inside either a loop or a switch

statement.

The break statement causes the program to stop execution of the innermost loop
and start processing the next line of code after the block.

The continue statement causes only the current iteration of the innermost loop
to cease and the next iteration of the same loop to start if the condition of the loop
is met. When using a continue statement with a for loop, you need to consider the
effects that continue has on the loop iteration. Examine the following code:

for (int i = 0; i < 10; i++) {
 System.out.println("Inside loop");
 continue;
}

The question is, is this an endless loop? The answer is no. When the continue
statement is hit, the iteration expression still runs! It runs just as though the current
iteration ended "in the natural way." So in the preceding example, i will still
increment before the condition (i < 10) is checked again.

Most of the time, a continue is used within an if test as follows:

for (int i = 0; i < 10; i++) {
 System.out.println("Inside loop");
 if (foo.doStuff() == 5) {
 continue;
 }
 // more loop code, that won't be reached when the above if
 // test is true
}

06-ch06.indd 330 8/28/2014 4:10:55 PM

 Creating Loops Constructs (OCA Objectives 5.1, 5.2, 5.3, 5.4, and 5.5) 331

Unlabeled Statements

Both the break statement and the continue statement can be unlabeled or labeled.
Although it's far more common to use break and continue unlabeled, the exam
expects you to know how labeled break and continue statements work. As stated
before, a break statement (unlabeled) will exit out of the innermost looping
construct and proceed with the next line of code beyond the loop block. The
following example demonstrates a break statement:

boolean problem = true;
while (true) {
 if (problem) {
 System.out.println("There was a problem");
 break;
 }
}
// next line of code

In the previous example, the break statement is unlabeled. The following is an
example of an unlabeled continue statement:

while (!EOF) {
 // read a field from a file
 if (wrongField) {
 continue; // move to the next field in the file
 }
 // otherwise do other stuff with the field
}

In this example, a file is being read one field at a time. When an error is
encountered, the program moves to the next field in the file and uses the continue
statement to go back into the loop (if it is not at the end of the file) and keeps
reading the various fields. If the break command were used instead, the code would
stop reading the file once the error occurred and move on to the next line of code
after the loop. The continue statement gives you a way to say, "This particular
iteration of the loop needs to stop, but not the whole loop itself. I just don't want
the rest of the code in this iteration to finish, so do the iteration expression and then
start over with the test, and don't worry about what was below the continue
statement."

Labeled Statements

Although many statements in a Java program can be labeled, it's most common to
use labels with loop statements like for or while, in conjunction with break and

06-ch06.indd 331 8/28/2014 4:10:55 PM

332 Chapter 6: Flow Control and Exceptions

continue statements. A label statement must be placed just before the statement
being labeled, and it consists of a valid identifier that ends with a colon (:).

You need to understand the difference between labeled and unlabeled break and
continue. The labeled varieties are needed only in situations where you have a
nested loop, and they need to indicate which of the nested loops you want to break
from, or from which of the nested loops you want to continue with the next
iteration. A break statement will exit out of the labeled loop, as opposed to the
innermost loop, if the break keyword is combined with a label.

Here's an example of what a label looks like:

foo:
 for (int x = 3; x < 20; x++) {
 while(y > 7) {
 y--;
 }
 }

The label must adhere to the rules for a valid variable name and should adhere to
the Java naming convention. The syntax for the use of a label name in conjunction
with a break statement is the break keyword, then the label name, followed by a
semicolon. A more complete example of the use of a labeled break statement is as
follows:

boolean isTrue = true;
outer:
 for(int i=0; i<5; i++) {
 while (isTrue) {
 System.out.println("Hello");
 break outer;
 } // end of inner while loop
 System.out.println("Outer loop."); // Won't print
 } // end of outer for loop
System.out.println("Good-Bye");

Running this code produces

Hello
Good-Bye

In this example, the word Hello will be printed one time. Then, the labeled break
statement will be executed, and the flow will exit out of the loop labeled outer. The
next line of code will then print out Good-Bye.

Let's see what will happen if the continue statement is used instead of the break
statement. The following code example is similar to the preceding one, with the
exception of substituting continue for break:

06-ch06.indd 332 8/28/2014 4:10:55 PM

 Creating Loops Constructs (OCA Objectives 5.1, 5.2, 5.3, 5.4, and 5.5) 333

outer:
 for (int i=0; i<5; i++) {
 for (int j=0; j<5; j++) {
 System.out.println("Hello");
 continue outer;
 } // end of inner loop
 System.out.println("outer"); // Never prints
 }
System.out.println("Good-Bye");

Running this code produces

Hello
Hello
Hello
Hello
Hello
Good-Bye

In this example, Hello will be printed five times. After the continue statement is
executed, the flow continues with the next iteration of the loop identified with the
label. Finally, when the condition in the outer loop evaluates to false, this loop
will finish and Good-Bye will be printed.

EXERCISE 6-2

Creating a Labeled while Loop

Try creating a labeled while loop. Make the label outer and provide a condition to
check whether a variable age is less than or equal to 21. Within the loop, increment
age by 1. Every time the program goes through the loop, check whether age is 16. If
it is, print the message "get your driver's license" and continue to the outer loop. If
not, print "Another year."

■ The outer label should appear just before the while loop begins.

■ Make sure age is declared outside of the while loop.

Labeled continue and break statements must be inside the loop that has

the same label name; otherwise, the code will not compile.

06-ch06.indd 333 8/28/2014 4:10:55 PM

334 Chapter 6: Flow Control and Exceptions

CERTIFICATION OBJECTIVE

Handling Exceptions
(OCA Objectives 8.1, 8.2, 8.3, and 8.4)

8.1 Differentiate among checked exceptions, RuntimeExceptions, and errors.

8.2 Create a try-catch block and determine how exceptions alter normal program flow.

8.3 Describe what exceptions are used for in Java.

8.4 Invoke a method that throws an exception.

An old maxim in software development says that 80 percent of the work is used
20 percent of the time. The 80 percent refers to the effort required to check and
handle errors. In many languages, writing program code that checks for and deals
with errors is tedious and bloats the application source into confusing spaghetti.
Still, error detection and handling may be the most important ingredient of any
robust application. Java arms developers with an elegant mechanism for handling
errors that produces efficient and organized error-handling code: exception handling.

Exception handling allows developers to detect errors easily without writing
special code to test return values. Even better, it lets us keep exception-handling code
cleanly separated from exception-generating code. It also lets us use the same
exception-handling code to deal with a range of possible exceptions.

Java 7 added several new exception-handling capabilities to the language. For our
purposes, Oracle split the various exception-handling topics into two main parts:

 1. The OCA exam covers the Java 6 version of exception handling.

 2. The OCP exam adds the new exception features added in Java 7.

In order to mirror Oracle's objectives, we split exception handling into two
chapters. This chapter will give you the basics—plenty to handle the OCA exam.
Chapter 7 (which also marks the beginning of the OCP part of the book) will pick
up where we left off by discussing the new Java 7 exception handling features.

06-ch06.indd 334 8/28/2014 4:10:55 PM

 Handling Exceptions (OCA Objectives 8.1, 8.2, 8.3, and 8.4) 335

Catching an Exception Using try and catch

Before we begin, let's introduce some terminology. The term "exception" means
"exceptional condition" and is an occurrence that alters the normal program flow.
A bunch of things can lead to exceptions, including hardware failures, resource
exhaustion, and good old bugs. When an exceptional event occurs in Java, an
exception is said to be "thrown." The code that's responsible for doing something
about the exception is called an "exception handler," and it "catches" the thrown
exception.

Exception handling works by transferring the execution of a program to an
appropriate exception handler when an exception occurs. For example, if you call a
method that opens a file but the file cannot be opened, execution of that method
will stop, and code that you wrote to deal with this situation will be run. Therefore,
we need a way to tell the JVM what code to execute when a certain exception
happens. To do this, we use the try and catch keywords. The try is used to define
a block of code in which exceptions may occur. This block of code is called a
"guarded region" (which really means "risky code goes here"). One or more catch
clauses match a specific exception (or group of exceptions—more on that later) to a
block of code that handles it. Here's how it looks in pseudocode:

 1. try {
 2. // This is the first line of the "guarded region"
 3. // that is governed by the try keyword.
 4. // Put code here that might cause some kind of exception.
 5. // We may have many code lines here or just one.
 6. }
 7. catch(MyFirstException) {
 8. // Put code here that handles this exception.
 9. // This is the next line of the exception handler.
10. // This is the last line of the exception handler.
11. }
12. catch(MySecondException) {
13. // Put code here that handles this exception
14. }
15.
16. // Some other unguarded (normal, non-risky) code begins here

In this pseudocode example, lines 2 through 5 constitute the guarded region that is
governed by the try clause. Line 7 is an exception handler for an exception of type
MyFirstException. Line 12 is an exception handler for an exception of type
MySecondException. Notice that the catch blocks immediately follow the try
block. This is a requirement; if you have one or more catch blocks, they must
immediately follow the try block. Additionally, the catch blocks must all follow

06-ch06.indd 335 8/28/2014 4:10:55 PM

336 Chapter 6: Flow Control and Exceptions

each other, without any other statements or blocks in between. Also, the order in
which the catch blocks appear matters, as we'll see a little later.

Execution of the guarded region starts at line 2. If the program executes all the
way past line 5 with no exceptions being thrown, execution will transfer to line 15
and continue downward. However, if at any time in lines 2 through 5 (the try
block) an exception of type MyFirstException is thrown, execution will
immediately transfer to line 7. Lines 8 through 10 will then be executed so that the
entire catch block runs, and then execution will transfer to line 15 and continue.

Note that if an exception occurred on, say, line 3 of the try block, the rest of the
lines in the try block (4 and 5) would never be executed. Once control jumps to
the catch block, it never returns to complete the balance of the try block. This is
exactly what you want, though. Imagine that your code looks something like this
pseudocode:

try {
 getTheFileFromOverNetwork
 readFromTheFileAndPopulateTable
}
catch(CantGetFileFromNetwork) {
 displayNetworkErrorMessage
}

This pseudocode demonstrates how you typically work with exceptions. Code that's
dependent on a risky operation (as populating a table with file data is dependent on
getting the file from the network) is grouped into a try block in such a way that if,
say, the first operation fails, you won't continue trying to run other code that's also
guaranteed to fail. In the pseudocode example, you won't be able to read from the
file if you can't get the file off the network in the first place.

One of the benefits of using exception handling is that code to handle any
particular exception that may occur in the governed region needs to be written only
once. Returning to our earlier code example, there may be three different places in
our try block that can generate a MyFirstException, but wherever it occurs it will
be handled by the same catch block (on line 7). We'll discuss more benefits of
exception handling near the end of this chapter.

Using fi nally

Although try and catch provide a terrific mechanism for trapping and handling
exceptions, we are left with the problem of how to clean up after ourselves if
an exception occurs. Because execution transfers out of the try block as soon as an
exception is thrown, we can't put our cleanup code at the bottom of the try block

06-ch06.indd 336 8/28/2014 4:10:55 PM

 Handling Exceptions (OCA Objectives 8.1, 8.2, 8.3, and 8.4) 337

and expect it to be executed if an exception occurs. Almost as bad an idea would be
placing our cleanup code in each of the catch blocks—let's see why.

Exception handlers are a poor place to clean up after the code in the try block
because each handler then requires its own copy of the cleanup code. If, for example,
you allocated a network socket or opened a file somewhere in the guarded region,
each exception handler would have to close the file or release the socket. That
would make it too easy to forget to do cleanup and also lead to a lot of redundant
code. To address this problem, Java offers the finally block.

A finally block encloses code that is always executed at some point after the
try block, whether an exception was thrown or not. Even if there is a return
statement in the try block, the finally block executes right after the return
statement is encountered and before the return executes!

This is the right place to close your files, release your network sockets, and
perform any other cleanup your code requires. If the try block executes with no
exceptions, the finally block is executed immediately after the try block completes.
If there was an exception thrown, the finally block executes immediately after the
proper catch block completes. Let's look at another pseudocode example:

 1: try {
 2: // This is the first line of the "guarded region".
 3: }
 4: catch(MyFirstException) {
 5: // Put code here that handles this exception
 6: }
 7: catch(MySecondException) {
 8: // Put code here that handles this exception
 9: }
10: finally {
11: // Put code here to release any resource we
12: // allocated in the try clause
13: }
14:
15: // More code here

As before, execution starts at the first line of the try block, line 2. If there are no
exceptions thrown in the try block, execution transfers to line 11, the first line of
the finally block. On the other hand, if a MySecondException is thrown while
the code in the try block is executing, execution transfers to the first line of that
exception handler, line 8 in the catch clause. After all the code in the catch clause
is executed, the program moves to line 11, the first line of the finally clause.
Repeat after me: finally always runs! Okay, we'll have to refine that a little, but for
now, start burning in the idea that finally always runs. If an exception is thrown,
finally runs. If an exception is not thrown, finally runs. If the exception is

06-ch06.indd 337 8/28/2014 4:10:56 PM

338 Chapter 6: Flow Control and Exceptions

caught, finally runs. If the exception is not caught, finally runs. Later we'll look
at the few scenarios in which finally might not run or complete.

Remember, finally clauses are not required. If you don't write one, your code
will compile and run just fine. In fact, if you have no resources to clean up after your
try block completes, you probably don't need a finally clause. Also, because the
compiler doesn't even require catch clauses, sometimes you'll run across code that
has a try block immediately followed by a finally block. Such code is useful when
the exception is going to be passed back to the calling method, as explained in the
next section. Using a finally block allows the cleanup code to execute even when
there isn't a catch clause.

The following legal code demonstrates a try with a finally but no catch:

try {
 // do stuff
} finally {
 // clean up
}

The following legal code demonstrates a try, catch, and finally:

try {
 // do stuff
} catch (SomeException ex) {
 // do exception handling
} finally {
 // clean up
}

The following ILLEGAL code demonstrates a try without a catch or finally:

try {
 // do stuff
}
 // need a catch or finally here
System.out.println("out of try block");

The following ILLEGAL code demonstrates a misplaced catch block:

try {
 // do stuff
}
 // can't have code between try/catch
System.out.println("out of try block");
catch(Exception ex) { }

06-ch06.indd 338 8/28/2014 4:10:56 PM

 Handling Exceptions (OCA Objectives 8.1, 8.2, 8.3, and 8.4) 339

Propagating Uncaught Exceptions

Why aren't catch clauses required? What happens to an exception that's thrown in
a try block when there is no catch clause waiting for it? Actually, there's no
requirement that you code a catch clause for every possible exception that could be
thrown from the corresponding try block. In fact, it's doubtful that you could
accomplish such a feat! If a method doesn't provide a catch clause for a particular
exception, that method is said to be "ducking" the exception (or "passing the buck").

So what happens to a ducked exception? Before we discuss that, we need to
briefly review the concept of the call stack. Most languages have the concept of a
method stack or a call stack. Simply put, the call stack is the chain of methods that
your program executes to get to the current method. If your program starts in
method main() and main() calls method a(), which calls method b(), which in
turn calls method c(), the call stack consists of the following:

c
b
a
main

We will represent the stack as growing upward (although it can also be visualized
as growing downward). As you can see, the last method called is at the top of the
stack, while the first calling method is at the bottom. The method at the very top of
the stack trace would be the method you were currently executing. If we move back
down the call stack, we're moving from the current method to the previously called
method. Figure 6-1 illustrates a way to think about how the call stack in Java works.

Now let's examine what happens to ducked exceptions. Imagine a building, say,
five stories high, and at each floor there is a deck or balcony. Now imagine that on
each deck, one person is standing holding a baseball mitt. Exceptions are like balls
dropped from person to person, starting from the roof. An exception is first thrown

It is illegal to use a try clause without either a catch clause or a finally

clause. A try clause by itself will result in a compiler error. Any catch clauses must

immediately follow the try block. Any finally clause must immediately follow the last

catch clause (or it must immediately follow the try block if there is no catch). It is legal

to omit either the catch clause or the finally clause, but not both.

06-ch06.indd 339 8/28/2014 4:10:56 PM

340 Chapter 6: Flow Control and Exceptions

from the top of the stack (in other words, the person on the roof), and if it isn't
caught by the same person who threw it (the person on the roof), it drops down the
call stack to the previous method, which is the person standing on the deck one
floor down. If not caught there by the person one floor down, the exception/ball
again drops down to the previous method (person on the next floor down), and so
on until it is caught or until it reaches the very bottom of the call stack. This is
called "exception propagation."

If an exception reaches the bottom of the call stack, it's like reaching the bottom
of a very long drop; the ball explodes, and so does your program. An exception that's
never caught will cause your application to stop running. A description (if one is
available) of the exception will be displayed, and the call stack will be "dumped."
This helps you debug your application by telling you what exception was thrown,
from what method it was thrown, and what the stack looked like at the time.

 FIGURE 6-1

The Java method
call stack

1) The call stack while method3() is running.

2) The call stack after method3() completes
Execution returns to method2()

The order in which methods are put on the call stack

The order in which methods complete

4
3
2
1

1
2
3

method3()
method2()
method1()
main()

method2()
method1()
main()

method2 invokes method3
method1 invokes method2
main invokes method1
main begins

method2() will complete
method1() will complete
main() will complete and the JVM will exit

You can keep throwing an exception down through the methods on the

stack. But what happens when you get to the main() method at the bottom? You can

throw the exception out of main() as well. This results in the JVM halting, and the stack

trace will be printed to the output. The following code throws an exception:

06-ch06.indd 340 8/28/2014 4:10:56 PM

 Handling Exceptions (OCA Objectives 8.1, 8.2, 8.3, and 8.4) 341

EXERCISE 6-3

Propagating and Catching an Exception

In this exercise you're going to create two methods that deal with exceptions. One
of the methods is the main() method, which will call another method. If an
exception is thrown in the other method, main() must deal with it. A finally
statement will be included to indicate that the program has completed. The method
that main() will call will be named reverse, and it will reverse the order of the
characters in a String. If the String contains no characters, reverse will
propagate an exception up to the main() method.

 1. Create a class called Propagate and a main() method, which will remain
empty for now.

 2. Create a method called reverse. It takes an argument of a String and
returns a String.

 3. In reverse, check whether the String has a length of 0 by using the
String.length() method. If the length is 0, the reverse method will
throw an exception.

class TestEx {
 public static void main (String [] args) {
 doStuff();
 }
 static void doStuff() {
 doMoreStuff();
 }
 static void doMoreStuff() {
 int x = 5/0; // Can't divide by zero!
 // ArithmeticException is thrown here
 }
}

It prints out a stack trace something like this:

 %java TestEx
Exception in thread "main" java.lang.ArithmeticException: / by zero
at TestEx.doMoreStuff(TestEx.java:10)
at TestEx.doStuff(TestEx.java:7)
at TestEx.main(TestEx.java:3)

06-ch06.indd 341 8/28/2014 4:10:56 PM

342 Chapter 6: Flow Control and Exceptions

 4. Now include the code to reverse the order of the String. Because this isn't
the main topic of this chapter, the reversal code has been provided, but feel
free to try it on your own.
String reverseStr = "";
for(int i=s.length()-1;i>=0;--i) {
 reverseStr += s.charAt(i);
}
return reverseStr;

 5. Now in the main() method you will attempt to call this method and deal
with any potential exceptions. Additionally, you will include a finally
statement that displays when main() has finished.

Defi ning Exceptions

We have been discussing exceptions as a concept. We know that they are thrown
when a problem of some type happens, and we know what effect they have on the
flow of our program. In this section we will develop the concepts further and use
exceptions in functional Java code.

Earlier we said that an exception is an occurrence that alters the normal program
flow. But because this is Java, anything that's not a primitive must be…an object.
Exceptions are no exception to this rule. Every exception is an instance of a class
that has class Exception in its inheritance hierarchy. In other words, exceptions are
always some subclass of java.lang.Exception.

When an exception is thrown, an object of a particular Exception subtype is
instantiated and handed to the exception handler as an argument to the catch
clause. An actual catch clause looks like this:

try {
 // some code here
}
catch (ArrayIndexOutOfBoundsException e) {
 e.printStackTrace();
}

In this example, e is an instance of the ArrayIndexOutOfBoundsException class.
As with any other object, you can call its methods.

06-ch06.indd 342 8/28/2014 4:10:56 PM

 Handling Exceptions (OCA Objectives 8.1, 8.2, 8.3, and 8.4) 343

Exception Hierarchy

All exception classes are subtypes of class Exception. This class derives from the
class Throwable (which derives from the class Object). Figure 6-2 shows the
hierarchy for the exception classes.

As you can see, there are two subclasses that derive from Throwable: Exception
and Error. Classes that derive from Error represent unusual situations that are not
caused by program errors and indicate things that would not normally happen during
program execution, such as the JVM running out of memory. Generally, your
application won't be able to recover from an Error, so you're not required to handle
them. If your code does not handle them (and it usually won't), it will still compile
with no trouble. Although often thought of as exceptional conditions, Errors are
technically not exceptions because they do not derive from class Exception.

In general, an exception represents something that happens not as a result of a
programming error, but rather because some resource is not available or some other
condition required for correct execution is not present. For example, if your
application is supposed to communicate with another application or computer that
is not answering, this is an exception that is not caused by a bug. Figure 6-2 also
shows a subtype of Exception called RuntimeException. These exceptions are a
special case because they sometimes do indicate program errors. They can also
represent rare, difficult-to-handle exceptional conditions. Runtime exceptions are
discussed in greater detail later in this chapter.

 FIGURE 6-2

Exception class
hierarchy

Object

Throwable

Error Exception

RuntimeException

06-ch06.indd 343 8/28/2014 4:10:56 PM

344 Chapter 6: Flow Control and Exceptions

Java provides many exception classes, most of which have quite descriptive
names. There are two ways to get information about an exception. The first is from
the type of the exception itself. The next is from information that you can get from
the exception object. Class Throwable (at the top of the inheritance tree for
exceptions) provides its descendants with some methods that are useful in exception
handlers. One of these is printStackTrace(). As you would expect, if you call an
exception object's printStackTrace() method, as in the earlier example, a stack
trace from where the exception occurred will be printed.

We discussed that a call stack builds upward with the most recently called method
at the top. You will notice that the printStackTrace() method prints the most
recently entered method first and continues down, printing the name of each
method as it works its way down the call stack (this is called "unwinding the stack")
from the top.

For the exam, you don't need to know any of the methods contained in

the Throwable classes, including Exception and Error. You are expected to know that

Exception, Error, RuntimeException, and Throwable types can all be thrown using the

throw keyword and can all be caught (although you rarely will catch anything other than

Exception subtypes).

Handling an Entire Class Hierarchy of Exceptions

We've discussed that the catch keyword allows you to specify a particular type of
exception to catch. You can actually catch more than one type of exception in a
single catch clause. If the exception class that you specify in the catch clause has
no subclasses, then only the specified class of exception will be caught. However, if
the class specified in the catch clause does have subclasses, any exception object
that subclasses the specified class will be caught as well.

For example, class IndexOutOfBoundsException has two subclasses,
ArrayIndexOutOfBoundsException and StringIndexOutOfBoundsException.
You may want to write one exception handler that deals with exceptions produced
by either type of boundary error, but you might not be concerned with which
exception you actually have. In this case, you could write a catch clause like the
following:

06-ch06.indd 344 8/28/2014 4:10:56 PM

 Handling Exceptions (OCA Objectives 8.1, 8.2, 8.3, and 8.4) 345

try {
 // Some code here that can throw a boundary exception
}
catch (IndexOutOfBoundsException e) {
 e.printStackTrace();
}

If any code in the try block throws ArrayIndexOutOfBoundsException or
StringIndexOutOfBoundsException, the exception will be caught and handled.
This can be convenient, but it should be used sparingly. By specifying an exception
class's superclass in your catch clause, you're discarding valuable information about
the exception. You can, of course, find out exactly what exception class you have,
but if you're going to do that, you're better off writing a separate catch clause for
each exception type of interest.

Resist the temptation to write a single catchall exception handler such as the

following:

try {
 // some code
}
catch (Exception e) {
 e.printStackTrace();
}

This code will catch every exception generated. Of course, no single exception

handler can properly handle every exception, and programming in this way

defeats the design objective. Exception handlers that trap many errors at once

will probably reduce the reliability of your program, because it's likely that an

exception will be caught that the handler does not know how to handle.

Exception Matching

If you have an exception hierarchy composed of a superclass exception and a number
of subtypes, and you're interested in handling one of the subtypes in a special way
but want to handle all the rest together, you need write only two catch clauses.

When an exception is thrown, Java will try to find (by looking at the available
catch clauses from the top down) a catch clause for the exception type. If it doesn't
find one, it will search for a handler for a supertype of the exception. If it does not
find a catch clause that matches a supertype for the exception, then the exception
is propagated down the call stack. This process is called "exception matching." Let's
look at an example.

06-ch06.indd 345 8/28/2014 4:10:56 PM

346 Chapter 6: Flow Control and Exceptions

 1: import java.io.*;
 2: public class ReadData {
 3: public static void main(String args[]) {
 4: try {
 5: RandomAccessFile raf =
 6: new RandomAccessFile("myfile.txt", "r");
 7: byte b[] = new byte[1000];
 8: raf.readFully(b, 0, 1000);
 9: }
10: catch(FileNotFoundException e) {
11: System.err.println("File not found");
12: System.err.println(e.getMessage());
13: e.printStackTrace();
14: }
15: catch(IOException e) {
16: System.err.println("IO Error");
17: System.err.println(e.toString());
18: e.printStackTrace();
19: }
20: }
21: }

This short program attempts to open a file and to read some data from it. Opening
and reading files can generate many exceptions, most of which are some type of
IOException. Imagine that in this program we're interested in knowing only
whether the exact exception is a FileNotFoundException. Otherwise, we don't
care exactly what the problem is.

FileNotFoundException is a subclass of IOException. Therefore, we could handle
it in the catch clause that catches all subtypes of IOException, but then we would
have to test the exception to determine whether it was a FileNotFoundException.
Instead, we coded a special exception handler for the FileNotFoundException and a
separate exception handler for all other IOException subtypes.

If this code generates a FileNotFoundException, it will be handled by the
catch clause that begins at line 10. If it generates another IOException—perhaps
EOFException, which is a subclass of IOException—it will be handled by the
catch clause that begins at line 15. If some other exception is generated, such as a
runtime exception of some type, neither catch clause will be executed and the
exception will be propagated down the call stack.

Notice that the catch clause for the FileNotFoundException was placed above
the handler for the IOException. This is really important! If we do it the opposite
way, the program will not compile. The handlers for the most specific exceptions
must always be placed above those for more general exceptions. The following will
not compile:

06-ch06.indd 346 8/28/2014 4:10:56 PM

 Handling Exceptions (OCA Objectives 8.1, 8.2, 8.3, and 8.4) 347

try {
 // do risky IO things
} catch (IOException e) {
 // handle general IOExceptions
} catch (FileNotFoundException ex) {
 // handle just FileNotFoundException
}

You'll get a compiler error something like this:

TestEx.java:15: exception java.io.FileNotFoundException has
 already been caught
} catch (FileNotFoundException ex) {
 ^

If you think back to the people with baseball mitts (in the section "Propagating
Uncaught Exceptions"), imagine that the most general mitts are the largest and
can thus catch many different kinds of balls. An IOException mitt is large enough
and flexible enough to catch any type of IOException. So if the person on the
fifth floor (say, Fred) has a big ol' IOException mitt, he can't help but catch a
FileNotFoundException ball with it. And if the guy (say, Jimmy) on the second
floor is holding a FileNotFoundException mitt, that FileNotFoundException
ball will never get to him, since it will always be stopped by Fred on the fifth floor,
standing there with his big-enough-for-any-IOException mitt.

So what do you do with exceptions that are siblings in the class hierarchy? If one
Exception class is not a subtype or supertype of the other, then the order in which
the catch clauses are placed doesn't matter.

Exception Declaration and the Public Interface

So, how do we know that some method throws an exception that we have to catch?
Just as a method must specify what type and how many arguments it accepts and
what is returned, the exceptions that a method can throw must be declared (unless
the exceptions are subclasses of RuntimeException). The list of thrown exceptions
is part of a method's public interface. The throws keyword is used as follows to list
the exceptions that a method can throw:

void myFunction() throws MyException1, MyException2 {
 // code for the method here
}

This method has a void return type, accepts no arguments, and declares that it can
throw one of two types of exceptions: either type MyException1 or type MyException2.

06-ch06.indd 347 8/28/2014 4:10:56 PM

348 Chapter 6: Flow Control and Exceptions

(Just because the method declares that it throws an exception doesn't mean it always
will. It just tells the world that it might.)

Suppose your method doesn't directly throw an exception, but calls a method that
does. You can choose not to handle the exception yourself and instead just declare
it, as though it were your method that actually throws the exception. If you do
declare the exception that your method might get from another method, and you
don't provide a try/catch for it, then the method will propagate back to the
method that called your method and will either be caught there or continue on to
be handled by a method further down the stack.

Any method that might throw an exception (unless it's a subclass of
RuntimeException) must declare the exception. That includes methods that
aren't actually throwing it directly, but are "ducking" and letting the exception
pass down to the next method in the stack. If you "duck" an exception, it is just
as if you were the one actually throwing the exception. RuntimeException
subclasses are exempt, so the compiler won't check to see if you've declared them.
But all non-RuntimeExceptions are considered "checked" exceptions, because
the compiler checks to be certain you've acknowledged that "bad things could
happen here."

Remember this:

Each method must either handle all checked exceptions by supplying a catch
clause or list each unhandled checked exception as a thrown exception.

This rule is referred to as Java's "handle or declare" requirement (sometimes called
"catch or declare").

Look for code that invokes a method declaring an exception, where the

calling method doesn't handle or declare the checked exception. The following code

(which uses the throw keyword to throw an exception manually—more on this next) has

two big problems that the compiler will prevent:

void doStuff() {
 doMore();
}
void doMore() {
 throw new IOException();
}

06-ch06.indd 348 8/28/2014 4:10:56 PM

 Handling Exceptions (OCA Objectives 8.1, 8.2, 8.3, and 8.4) 349

Again, some exceptions are exempt from this rule. An object of type
RuntimeException may be thrown from any method without being specified as part
of the method's public interface (and a handler need not be present). And even if a
method does declare a RuntimeException, the calling method is under no
obligation to handle or declare it. RuntimeException, Error, and all of their
subtypes are unchecked exceptions, and unchecked exceptions do not have to be
specified or handled. Here is an example:

import java.io.*;
class Test {
 public int myMethod1() throws EOFException {
 return myMethod2();
 }
 public int myMethod2() throws EOFException {
 // code that actually could throw the exception goes here
 return 1;
 }
}

Let's look at myMethod1(). Because EOFException subclasses IOException, and
IOException subclasses Exception, it is a checked exception and must be declared
as an exception that may be thrown by this method. But where will the exception
actually come from? The public interface for method myMethod2() called here
declares that an exception of this type can be thrown. Whether that method
actually throws the exception itself or calls another method that throws it is
unimportant to us; we simply know that we either have to catch the exception or
declare that we threw it. The method myMethod1() does not catch the exception,
so it declares that it throws it. Now let's look at another legal example,
myMethod3():

public void myMethod3() {
 // code that could throw a NullPointerException goes here
}

First, the doMore() method throws a checked exception but does not declare it! But

suppose we fi x the doMore() method as follows:

void doMore() throws IOException { … }

The doStuff() method is still in trouble because it, too, must declare the IOException,

unless it handles it by providing a try/catch, with a catch clause that can take an

IOException.

06-ch06.indd 349 8/28/2014 4:10:56 PM

350 Chapter 6: Flow Control and Exceptions

According to the comment, this method can throw a NullPointerException.
Because RuntimeException is the superclass of NullPointerException, it is an
unchecked exception and need not be declared. We can see that myMethod3() does
not declare any exceptions.

Runtime exceptions are referred to as unchecked exceptions. All other exceptions
are checked exceptions, and they don't derive from java.lang.RuntimeException.
A checked exception must be caught somewhere in your code. If you invoke a
method that throws a checked exception but you don't catch the checked exception
somewhere, your code will not compile. That's why they're called checked
exceptions: the compiler checks to make sure that they're handled or declared. A
number of the methods in the Java API throw checked exceptions, so you will often
write exception handlers to cope with exceptions generated by methods you didn't
write.

You can also throw an exception yourself, and that exception can be either an
existing exception from the Java API or one of your own. To create your own
exception, you simply subclass Exception (or one of its subclasses) as follows:

class MyException extends Exception { }

And if you throw the exception, the compiler will guarantee that you declare it as
follows:

class TestEx {
 void doStuff() {
 throw new MyException(); // Throw a checked exception
 }
}

The preceding code upsets the compiler:

TestEx.java:6: unreported exception MyException; must be caught or
declared to be thrown
 throw new MyException();
 ^

You need to know how an Error compares with checked and unchecked
exceptions. Objects of type Error are not Exception objects, although they do
represent exceptional conditions. Both Exception and Error share a common
superclass, Throwable; thus both can be thrown using the throw keyword. When an
Error or a subclass of Error (like RuntimeException) is thrown, it's unchecked.
You are not required to catch Error objects or Error subtypes. You can also throw

06-ch06.indd 350 8/28/2014 4:10:56 PM

 Handling Exceptions (OCA Objectives 8.1, 8.2, 8.3, and 8.4) 351

an Error yourself (although, other than AssertionError, you probably won't ever
want to), and you can catch one, but again, you probably won't. What, for example,
would you actually do if you got an OutOfMemoryError? It's not like you can tell
the garbage collector to run; you can bet the JVM fought desperately to save itself
(and reclaimed all the memory it could) by the time you got the error. In other
words, don't expect the JVM at that point to say, "Run the garbage collector? Oh,
thanks so much for telling me. That just never occurred to me. Sure, I'll get right on
it." Even better, what would you do if a VirtualMachineError arose? Your program
is toast by the time you'd catch the error, so there's really no point in trying to catch

When an object of a subtype of Exception is thrown, it must be handled

or declared. These objects are called checked exceptions and include all exceptions

except those that are subtypes of RuntimeException, which are unchecked exceptions.

Be ready to spot methods that don't follow the "handle or declare" rule, such as this:

class MyException extends Exception {
 void someMethod () {
 doStuff();
 }
 void doStuff() throws MyException {
 try {
 throw new MyException();
 }
 catch(MyException me) {
 throw me;
 }
 }
}

You need to recognize that this code won't compile. If you try, you'll get this:

MyException.java:3: unreported exception MyException;
must be caught or declared to be thrown
doStuff();
 ^

Notice that someMethod() fails either to handle or declare the exception that can be

thrown by doStuff().

06-ch06.indd 351 8/28/2014 4:10:56 PM

352 Chapter 6: Flow Control and Exceptions

one of these babies. Just remember, though, that you can! The following compiles
just fine:

class TestEx {
 public static void main (String [] args) {
 badMethod();
 }
 static void badMethod() { // No need to declare an Error
 doStuff();
 }
 static void doStuff() { // No need to declare an Error
 try {
 throw new Error();
 }
 catch(Error me) {
 throw me; // We catch it, but then rethrow it
 }
 }
}

If we were throwing a checked exception rather than Error, then the doStuff()
method would need to declare the exception. But remember, since Error is not a
subtype of Exception, it doesn't need to be declared. You're free to declare it if you
like, but the compiler just doesn't care one way or another when or how the Error
is thrown, or by whom.

Because Java has checked exceptions, it's commonly said that Java forces

developers to handle exceptions. Yes, Java forces us to write exception

handlers for each exception that can occur during normal operation, but it's

up to us to make the exception handlers actually do something useful. We

know software managers who melt down when they see a programmer write

something like this:

try {
 callBadMethod();
} catch (Exception ex) { }

Notice anything missing? Don't "eat" the exception by catching it without

actually handling it. You won't even be able to tell that the exception

occurred, because you'll never see the stack trace.

06-ch06.indd 352 8/28/2014 4:10:56 PM

 Handling Exceptions (OCA Objectives 8.1, 8.2, 8.3, and 8.4) 353

Rethrowing the Same Exception

Just as you can throw a new exception from a catch clause, you can also throw the
same exception you just caught. Here's a catch clause that does this:

catch(IOException e) {
 // Do things, then if you decide you can't handle it…
 throw e;
}

All other catch clauses associated with the same try are ignored; if a finally
block exists, it runs, and the exception is thrown back to the calling method (the
next method down the call stack). If you throw a checked exception from a catch
clause, you must also declare that exception! In other words, you must handle and
declare, as opposed to handle or declare. The following example is illegal:

public void doStuff() {
 try {
 // risky IO things
 } catch(IOException ex) {
 // can't handle it
 throw ex; // Can't throw it unless you declare it
 }
}

In the preceding code, the doStuff() method is clearly able to throw a checked
exception—in this case an IOException—so the compiler says, "Well, that's just
peachy that you have a try/catch in there, but it's not good enough. If you might
rethrow the IOException you catch, then you must declare it (in the method
signature)!"

EXERCISE 6-4

Creating an Exception

In this exercise we attempt to create a custom exception. We won't put in any new
methods (it will have only those inherited from Exception), and because it extends
Exception, the compiler considers it a checked exception. The goal of the program
is to determine whether a command-line argument representing a particular food (as
a string) is considered bad or okay.

 1. Let's first create our exception. We will call it BadFoodException. This
exception will be thrown when a bad food is encountered.

06-ch06.indd 353 8/28/2014 4:10:56 PM

354 Chapter 6: Flow Control and Exceptions

 2. Create an enclosing class called MyException and a main() method, which
will remain empty for now.

 3. Create a method called checkFood(). It takes a String argument and
throws our exception if it doesn't like the food it was given. Otherwise, it
tells us it likes the food. You can add any foods you aren't particularly fond of
to the list.

 4. Now in the main() method, you'll get the command-line argument out of
the String array and then pass that String on to the checkFood() method.
Because it's a checked exception, the checkFood() method must declare it,
and the main() method must handle it (using a try/catch). Do not have
main() declare the exception, because if main() ducks the exception, who
else is back there to catch it? (Actually, main() can legally declare excep-
tions, but don't do that in this exercise.)

As nifty as exception handling is, it's still up to the developer to make proper use
of it. Exception handling makes organizing our code and signaling problems easy, but
the exception handlers still have to be written. You'll find that even the most
complex situations can be handled, and your code will be reusable, readable, and
maintainable.

CERTIFICATION OBJECTIVE

Common Exceptions and Errors
(OCA Objective 8.5)

8.5 Recognize common exception classes and categories.

Exception handling is another area that the exam creation team decided to
expand for the OCJP 5, OCJP 6, and both Java 7 exams. The intention of this
objective is to make sure that you are familiar with some of the most common
exceptions and errors you'll encounter as a Java programmer.

06-ch06.indd 354 8/28/2014 4:10:56 PM

Common Exceptions and Errors (OCA Objective 8.5) 355

This is another one of those objectives that will turn up all through the real exam
(does "An exception is thrown at runtime" ring a bell?), so make sure this section
gets a lot of your attention.

Where Exceptions Come From

Jump back a page and take a look at the last sentence. It's important that you
understand what causes exceptions and errors, and where they come from. For the
purposes of exam preparation, let's define two broad categories of exceptions and
errors:

■ JVM exceptions Those exceptions or errors that are either exclusively or
most logically thrown by the JVM

■ Programmatic exceptions Those exceptions that are thrown explicitly by
application and/or API programmers

JVM Thrown Exceptions

Let's start with a very common exception, the NullPointerException. As we saw
in earlier chapters, this exception occurs when you attempt to access an object using
a reference variable with a current value of null. There's no way that the compiler
can hope to find these problems before runtime. Take a look at the following:

class NPE {
 static String s;
 public static void main(String [] args) {
 System.out.println(s.length());
 }
}

The questions from this section are likely to be along the lines of, "Here's

some code that just did something bad, which exception will be thrown?" Throughout

the exam, questions will present some code and ask you to determine whether the code

will run, or whether an exception will be thrown. Since these questions are so common,

understanding the causes for these exceptions is critical to your success.

06-ch06.indd 355 8/28/2014 4:10:56 PM

356 Chapter 6: Flow Control and Exceptions

Surely, the compiler can find the problem with that tiny little program! Nope,
you're on your own. The code will compile just fine, and the JVM will throw a
NullPointerException when it tries to invoke the length() method.

Earlier in this chapter we discussed the call stack. As you recall, we used the
convention that main() would be at the bottom of the call stack, and that as
main() invokes another method, and that method invokes another, and so on, the
stack grows upward. Of course the stack resides in memory, and even if your OS
gives you a gigabyte of RAM for your program, it's still a finite amount. It's possible
to grow the stack so large that the OS runs out of space to store the call stack. When
this happens, you get (wait for it...) a StackOverflowError. The most common
way for this to occur is to create a recursive method. A recursive method invokes
itself in the method body. Although that may sound weird, it's a very common and
useful technique for such things as searching and sorting algorithms. Take a look at
this code:

void go() { // recursion gone bad
 go();
}

As you can see, if you ever make the mistake of invoking the go() method, your
program will fall into a black hole—go() invoking go() invoking go(), until, no
matter how much memory you have, you'll get a StackOverflowError. Again, only
the JVM knows when this moment occurs, and the JVM will be the source of this
error.

Programmatically Thrown Exceptions

Now let's look at programmatically thrown exceptions. Remember we defined
"programmatically" as meaning something like this:

Created by an application and/or API developer.

For instance, many classes in the Java API have methods that take String
arguments and convert these Strings into numeric primitives. A good example of
these classes are the so-called "wrapper classes" that OCP candidates will study in
Chapter 8. Even though we haven't talked about wrapper classes yet, the following
example should make sense.

At some point long ago, some programmer wrote the java.lang.Integer class
and created methods like parseInt() and valueOf(). That programmer wisely
decided that if one of these methods was passed a String that could not be

06-ch06.indd 356 8/28/2014 4:10:56 PM

 Common Exceptions and Errors (OCA Objective 8.5) 357

converted into a number, the method should throw a NumberFormatException.
The partially implemented code might look something like this:

int parseInt(String s) throws NumberFormatException {
 boolean parseSuccess = false;
 int result = 0;
 // do complicated parsing
 if (!parseSuccess) // if the parsing failed
 throw new NumberFormatException();
 return result;
}

Other examples of programmatic exceptions include an AssertionError (okay,
it's not an exception, but it IS thrown programmatically), and throwing an
IllegalArgumentException. In fact, our mythical API developer could have used
IllegalArgumentException for her parseInt() method. But it turns out that
NumberFormatException extends IllegalArgumentException and is a little
more precise, so in this case, using NumberFormatException supports the notion
we discussed earlier: that when you have an exception hierarchy, you should use the
most precise exception that you can.

Of course, as we discussed earlier, you can also make up your very own special
custom exceptions and throw them whenever you want to. These homemade
exceptions also fall into the category of "programmatically thrown exceptions."

A Summary of the Exam's Exceptions and Errors

OCA Objective 8.5 does not list specific exceptions and errors; it says "recognize
common exceptions…." Table 6-2 summarizes the ten exceptions and errors that are
a part of the SCJP 6 exam; it will cover OCA Objective 8.5, too.

End of Part I—OCA

Barring our standard end-of-chapter stuff, such as mock exam questions, you've
reached the end of the OCA part of the book. If you've studied these six chapters
carefully, and then taken and reviewed the end-of-chapter mock exams and the
OCA master exams and done well on them, we're confident that you're a little bit
over-prepared for the official Oracle OCA exam. (Not "way" over-prepared—just a
little.) Good luck, and we hope to see you back here for Part II, Chapter 7, in which
we'll explore the exception handling features added in Java 7.

06-ch06.indd 357 8/28/2014 4:10:56 PM

358 Chapter 6: Flow Control and Exceptions

Exception Description Typically Thrown

ArrayIndexOutOfBoundsException
(Chapter 5)

Thrown when attempting to access an
array with an invalid index value (either
negative or beyond the length of the
array).

By the JVM

ClassCastException
(Chapter 2)

Thrown when attempting to cast a
reference variable to a type that fails the
IS-A test.

By the JVM

IllegalArgumentException Thrown when a method receives an
argument formatted differently than the
method expects.

Programmatically

IllegalStateException Thrown when the state of the
environment doesn't match the
operation being attempted—for
example, using a scanner that's been
closed.

Programmatically

NullPointerException
(Chapter 3)

Thrown when attempting to invoke a
method on, or access a property from, a
reference variable whose current value
is null.

By the JVM

NumberFormatException
(this chapter)

Thrown when a method that converts a
String to a number receives a String
that it cannot convert.

Programmatically

AssertionError Thrown when an assert statement's
boolean test returns false.

Programmatically

ExceptionInInitializerError
(Chapter 2)

Thrown when attempting to initialize a
static variable or an initialization block.

By the JVM

StackOverflowError
(this chapter)

Typically thrown when a method
recurses too deeply. (Each invocation is
added to the stack.)

By the JVM

NoClassDefFoundError Thrown when the JVM can't find a
class it needs, because of a command-
line error, a classpath issue, or a missing
.class file.

By the JVM

 TABLE 6-2 Descriptions and Sources of Common Exceptions

06-ch06.indd 358 8/28/2014 4:10:57 PM

 Certifi cation Summary 359

CERTIFICATION SUMMARY

This chapter covered a lot of ground, all of which involved ways of controlling your
program flow, based on a conditional test. First you learned about if and switch
statements. The if statement evaluates one or more expressions to a boolean result.
If the result is true, the program will execute the code in the block that is
encompassed by the if. If an else statement is used and the if expression evaluates
to false, then the code following the else will be performed. If no else block is
defined, then none of the code associated with the if statement will execute.

You also learned that the switch statement can be used to replace multiple
if-else statements. The switch statement can evaluate integer primitive types that
can be implicitly cast to an int (those types are byte, short, int, and char), or it
can evaluate enums, and as of Java 7, it can evaluate Strings. At runtime, the JVM
will try to find a match between the expression in the switch statement and a
constant in a corresponding case statement. If a match is found, execution will begin
at the matching case and continue on from there, executing code in all the remaining
case statements until a break statement is found or the end of the switch statement
occurs. If there is no match, then the default case will execute, if there is one.

You've learned about the three looping constructs available in the Java language.
These constructs are the for loop (including the basic for and the enhanced for,
which was new to Java 5), the while loop, and the do loop. In general, the for loop
is used when you know how many times you need to go through the loop. The
while loop is used when you do not know how many times you want to go through,
whereas the do loop is used when you need to go through at least once. In the for
loop and the while loop, the expression will have to evaluate to true to get inside
the block and will check after every iteration of the loop. The do loop does not
check the condition until after it has gone through the loop once. The major benefit
of the for loop is the ability to initialize one or more variables and increment or
decrement those variables in the for loop definition.

The break and continue statements can be used in either a labeled or unlabeled
fashion. When unlabeled, the break statement will force the program to stop
processing the innermost looping construct and start with the line of code following
the loop. Using an unlabeled continue command will cause the program to stop
execution of the current iteration of the innermost loop and proceed with the next
iteration. When a break or a continue statement is used in a labeled manner, it will
perform in the same way, with one exception: the statement will not apply to the
innermost loop; instead, it will apply to the loop with the label. The break statement
is used most often in conjunction with the switch statement. When there is a match
between the switch expression and the case constant, the code following the case
constant will be performed. To stop execution, a break is needed.

06-ch06.indd 359 8/28/2014 4:10:57 PM

360 Chapter 6: Flow Control and Exceptions

You've seen how Java provides an elegant mechanism in exception handling.
Exception handling allows you to isolate your error-correction code into separate
blocks so that the main code doesn't become cluttered by error-checking code.
Another elegant feature allows you to handle similar errors with a single error-
handling block, without code duplication. Also, the error handling can be deferred
to methods further back on the call stack.

You learned that Java's try keyword is used to specify a guarded region—a block
of code in which problems might be detected. An exception handler is the code that
is executed when an exception occurs. The handler is defined by using Java's catch
keyword. All catch clauses must immediately follow the related try block.

Java also provides the finally keyword. This is used to define a block of code that
is always executed, either immediately after a catch clause completes or immediately
after the associated try block in the case that no exception was thrown (or there was
a try but no catch). Use finally blocks to release system resources and to perform
any cleanup required by the code in the try block. A finally block is not required,
but if there is one, it must immediately follow the last catch. (If there is no catch
block, the finally block must immediately follow the try block.) It's guaranteed to
be called except when the try or catch issues a System.exit().

An exception object is an instance of class Exception or one of its subclasses.
The catch clause takes, as a parameter, an instance of an object of a type derived
from the Exception class. Java requires that each method either catches any
checked exception it can throw or else declares that it throws the exception. The
exception declaration is part of the method's signature. To declare that an exception
may be thrown, the throws keyword is used in a method definition, along with a list
of all checked exceptions that might be thrown.

Runtime exceptions are of type RuntimeException (or one of its subclasses).
These exceptions are a special case because they do not need to be handled or
declared, and thus are known as "unchecked" exceptions. Errors are of type java
.lang.Error or its subclasses, and like runtime exceptions, they do not need to be
handled or declared. Checked exceptions include any exception types that are not of
type RuntimeException or Error. If your code fails either to handle a checked
exception or declare that it is thrown, your code won't compile. But with unchecked
exceptions or objects of type Error, it doesn't matter to the compiler whether you
declare them or handle them, do nothing about them, or do some combination of
declaring and handling. In other words, you're free to declare them and handle
them, but the compiler won't care one way or the other. It's not good practice to
handle an Error, though, because you can rarely recover from one.

Finally, remember that exceptions can be generated by the JVM, or by a programmer.

06-ch06.indd 360 8/28/2014 4:10:57 PM

Two-Minute Drill 361

TWO-MINUTE DRILL

Here are some of the key points from each certification objective in this chapter.
You might want to loop through them several times.

Writing Code Using if and switch Statements
(OCA Objectives 3.4 and 3.5)

❑ The only legal expression in an if statement is a boolean expression—in
other words, an expression that resolves to a boolean or a Boolean reference.

❑ Watch out for boolean assignments (=) that can be mistaken for boolean
equality (==) tests:
boolean x = false;
if (x = true) { } // an assignment, so x will always be true!

❑ Curly braces are optional for if blocks that have only one conditional
statement. But watch out for misleading indentations.

❑ switch statements can evaluate only to enums or the byte, short, int,
char, and, as of Java 7, String data types. You can't say this:
long s = 30;
switch(s) { }

❑ The case constant must be a literal or final variable, or a constant
expression, including an enum or a String. You cannot have a case that
includes a non-final variable or a range of values.

❑ If the condition in a switch statement matches a case constant, execution
will run through all code in the switch following the matching case
statement until a break statement or the end of the switch statement is
encountered. In other words, the matching case is just the entry point into
the case block, but unless there's a break statement, the matching case is
not the only case code that runs.

❑ The default keyword should be used in a switch statement if you want to
run some code when none of the case values match the conditional value.

❑ The default block can be located anywhere in the switch block, so if
no preceding case matches, the default block will be entered, and if the
default does not contain a break, then code will continue to execute
(fall-through) to the end of the switch or until the break statement is
encountered.

✓

06-ch06.indd 361 8/28/2014 4:10:57 PM

362 Chapter 6: Flow Control and Exceptions

Writing Code Using Loops (OCA Objectives 5.1, 5.2, 5.3, and 5.4)

❑ A basic for statement has three parts: declaration and/or initialization,
boolean evaluation, and the iteration expression.

❑ If a variable is incremented or evaluated within a basic for loop, it must be
declared before the loop or within the for loop declaration.

❑ A variable declared (not just initialized) within the basic for loop
declaration cannot be accessed outside the for loop—in other words, code
below the for loop won't be able to use the variable.

❑ You can initialize more than one variable of the same type in the first part
of the basic for loop declaration; each initialization must be separated by a
comma.

❑ An enhanced for statement (new as of Java 5) has two parts: the declaration
and the expression. It is used only to loop through arrays or collections.

❑ With an enhanced for, the expression is the array or collection through
which you want to loop.

❑ With an enhanced for, the declaration is the block variable, whose type is
compatible with the elements of the array or collection, and that variable
contains the value of the element for the given iteration.

❑ You cannot use a number (old C-style language construct) or anything that
does not evaluate to a boolean value as a condition for an if statement or
looping construct. You can't, for example, say if(x), unless x is a boolean
variable.

❑ The do loop will enter the body of the loop at least once, even if the test
condition is not met.

Using break and continue (OCA Objective 5.5)

❑ An unlabeled break statement will cause the current iteration of the
innermost looping construct to stop and the line of code following the loop
to run.

❑ An unlabeled continue statement will cause the current iteration of the
innermost loop to stop, the condition of that loop to be checked, and if the
condition is met, the loop to run again.

❑ If the break statement or the continue statement is labeled, it will cause
similar action to occur on the labeled loop, not the innermost loop.

06-ch06.indd 362 8/28/2014 4:10:57 PM

Two-Minute Drill 363

Handling Exceptions (OCA Objectives 8.1, 8.2, 8.3, and 8.4)

❑ Exceptions come in two flavors: checked and unchecked.

❑ Checked exceptions include all subtypes of Exception, excluding classes
that extend RuntimeException.

❑ Checked exceptions are subject to the handle or declare rule; any method that
might throw a checked exception (including methods that invoke methods
that can throw a checked exception) must either declare the exception using
throws, or handle the exception with an appropriate try/catch.

❑ Subtypes of Error or RuntimeException are unchecked, so the compiler
doesn't enforce the handle or declare rule. You're free to handle them or to
declare them, but the compiler doesn't care one way or the other.

❑ If you use an optional finally block, it will always be invoked, regardless
of whether an exception in the corresponding try is thrown or not, and
regardless of whether a thrown exception is caught or not.

❑ The only exception to the finally-will-always-be-called rule is that a
finally will not be invoked if the JVM shuts down. That could happen if
code from the try or catch blocks calls System.exit().

❑ Just because finally is invoked does not mean it will complete. Code in the
finally block could itself raise an exception or issue a System.exit().

❑ Uncaught exceptions propagate back through the call stack, starting from
the method where the exception is thrown and ending with either the first
method that has a corresponding catch for that exception type or a JVM
shutdown (which happens if the exception gets to main(), and main() is
"ducking" the exception by declaring it).

❑ You can create your own exceptions, normally by extending Exception
or one of its subtypes. Your exception will then be considered a checked
exception (unless you are extending from RuntimeException), and the
compiler will enforce the handle or declare rule for that exception.

❑ All catch blocks must be ordered from most specific to most general. If you
have a catch clause for both IOException and Exception, you must put
the catch for IOException first in your code. Otherwise, the IOException
would be caught by catch(Exception e), because a catch argument can
catch the specified exception or any of its subtypes! The compiler will stop
you from defining catch clauses that can never be reached.

❑ Some exceptions are created by programmers, and some by the JVM.

06-ch06.indd 363 8/28/2014 4:10:58 PM

364 Chapter 6: Flow Control and Exceptions

SELF TEST

 1. (Also an Upgrade topic) Given:

public class Flipper {
 public static void main(String[] args) {
 String o = "-";
 switch("FRED".toLowerCase().substring(1,3)) {
 case "yellow":
 o += "y";
 case "red":
 o += "r";
 case "green":
 o += "g";
 }
 System.out.println(o);
 }
}

 What is the result?
 A. -

 B. -r

 C. -rg

 D. Compilation fails
 E. An exception is thrown at runtime

 2. Given:

class Plane {
 static String s = "-";
 public static void main(String[] args) {
 new Plane().s1();
 System.out.println(s);
 }
 void s1() {
 try { s2(); }
 catch (Exception e) { s += "c"; }
 }
 void s2() throws Exception {
 s3(); s += "2";
 s3(); s += "2b";
 }
 void s3() throws Exception {
 throw new Exception();
 }
}

06-ch06.indd 364 8/28/2014 4:10:58 PM

Self Test 365

 What is the result?
 A. -

 B. -c

 C. -c2

 D. -2c

 E. -c22b

 F. -2c2b

 G. -2c2bc

 H. Compilation fails

 3. Given:

try { int x = Integer.parseInt("two"); }

 Which could be used to create an appropriate catch block? (Choose all that apply.)
 A. ClassCastException

 B. IllegalStateException

 C. NumberFormatException

 D. IllegalArgumentException

 E. ExceptionInInitializerError

 F. ArrayIndexOutOfBoundsException

 4. Given:

public class Flip2 {
 public static void main(String[] args) {
 String o = "-";
 String[] sa = new String[4];
 for(int i = 0; i < args.length; i++)
 sa[i] = args[i];
 for(String n: sa) {
 switch(n.toLowerCase()) {
 case "yellow": o += "y";
 case "red": o += "r";
 case "green": o += "g";
 }
 }
 System.out.print(o);
 }
}

 And given the command-line invocation:

Java Flip2 RED Green YeLLow

06-ch06.indd 365 8/28/2014 4:10:58 PM

366 Chapter 6: Flow Control and Exceptions

 Which are true? (Choose all that apply.)
 A. The string rgy will appear somewhere in the output
 B. The string rgg will appear somewhere in the output
 C. The string gyr will appear somewhere in the output
 D. Compilation fails
 E. An exception is thrown at runtime

 5. Given:

1. class Loopy {
2. public static void main(String[] args) {
3. int[] x = {7,6,5,4,3,2,1};
4. // insert code here
5. System.out.print(y + " ");
6. }
7. }
8. }

 Which, inserted independently at line 4, compiles? (Choose all that apply.)
 A. for(int y : x) {

 B. for(x : int y) {

 C. int y = 0; for(y : x) {

 D. for(int y=0, z=0; z<x.length; z++) { y = x[z];

 E. for(int y=0, int z=0; z<x.length; z++) { y = x[z];

 F. int y = 0; for(int z=0; z<x.length; z++) { y = x[z];

 6. Given:

class Emu {
 static String s = "-";
 public static void main(String[] args) {
 try {
 throw new Exception();
 } catch (Exception e) {
 try {
 try { throw new Exception();
 } catch (Exception ex) { s += "ic "; }
 throw new Exception(); }
 catch (Exception x) { s += "mc "; }
 finally { s += "mf "; }
 } finally { s += "of "; }
 System.out.println(s);
} }

 What is the result?

06-ch06.indd 366 8/28/2014 4:10:58 PM

Self Test 367

 A. -ic of

 B. -mf of

 C. -mc mf

 D. -ic mf of

 E. -ic mc mf of

 F. -ic mc of mf

 G. Compilation fails

 7. Given:

 3. class SubException extends Exception { }
 4. class SubSubException extends SubException { }
 5.
 6. public class CC { void doStuff() throws SubException { } }
 7.
 8. class CC2 extends CC { void doStuff() throws SubSubException { } }
 9.
10. class CC3 extends CC { void doStuff() throws Exception { } }
11.
12. class CC4 extends CC { void doStuff(int x) throws Exception { } }
13.
14. class CC5 extends CC { void doStuff() { } }

 What is the result? (Choose all that apply.)
 A. Compilation succeeds
 B. Compilation fails due to an error on line 8
 C. Compilation fails due to an error on line 10
 D. Compilation fails due to an error on line 12
 E. Compilation fails due to an error on line 14

 8. (OCP only) Given:

 3. public class Ebb {
 4. static int x = 7;
 5. public static void main(String[] args) {
 6. String s = "";
 7. for(int y = 0; y < 3; y++) {
 8. x++;
 9. switch(x) {
10. case 8: s += "8 ";
11. case 9: s += "9 ";
12. case 10: { s+= "10 "; break; }
13. default: s += "d ";
14. case 13: s+= "13 ";
15. }

06-ch06.indd 367 8/28/2014 4:10:58 PM

368 Chapter 6: Flow Control and Exceptions

16. }
17. System.out.println(s);
18. }
19. static { x++; }
20. }

 What is the result?
 A. 9 10 d

 B. 8 9 10 d

 C. 9 10 10 d

 D. 9 10 10 d 13

 E. 8 9 10 10 d 13

 F. 8 9 10 9 10 10 d 13

 G. Compilation fails

 9. Given:

 3. class Infinity { }
 4. public class Beyond extends Infinity {
 5. static Integer i;
 6. public static void main(String[] args) {
 7. int sw = (int)(Math.random() * 3);
 8. switch(sw) {
 9. case 0: { for(int x = 10; x > 5; x++)
10. if(x > 10000000) x = 10;
11. break; }
12. case 1: { int y = 7 * i; break; }
13. case 2: { Infinity inf = new Beyond();
14. Beyond b = (Beyond)inf; }
15. }
16. }
17. }

 And given that line 7 will assign the value 0, 1, or 2 to sw, which are true?
(Choose all that apply.)

 A. Compilation fails
 B. A ClassCastException might be thrown
 C. A StackOverflowError might be thrown
 D. A NullPointerException might be thrown
 E. An IllegalStateException might be thrown
 F. The program might hang without ever completing
 G. The program will always complete without exception

06-ch06.indd 368 8/28/2014 4:10:58 PM

Self Test 369

 10. Given:

 3. public class Circles {
 4. public static void main(String[] args) {
 5. int[] ia = {1,3,5,7,9};
 6. for(int x : ia) {
 7. for(int j = 0; j < 3; j++) {
 8. if(x > 4 && x < 8) continue;
 9. System.out.print(" " + x);
10. if(j == 1) break;
11. continue;
12. }
13. continue;
14. }
15. }
16. }

 What is the result?
 A. 1 3 9

 B. 5 5 7 7

 C. 1 3 3 9 9

 D. 1 1 3 3 9 9

 E. 1 1 1 3 3 3 9 9 9

 F. Compilation fails

 11. Given:

 3. public class OverAndOver {
 4. static String s = "";
 5. public static void main(String[] args) {
 6. try {
 7. s += "1";
 8. throw new Exception();
 9. } catch (Exception e) { s += "2";
10. } finally { s += "3"; doStuff(); s += "4";
11. }
12. System.out.println(s);
13. }
14. static void doStuff() { int x = 0; int y = 7/x; }
15. }

 What is the result?
 A. 12

 B. 13

 C. 123

 D. 1234

06-ch06.indd 369 8/28/2014 4:10:58 PM

370 Chapter 6: Flow Control and Exceptions

 E. Compilation fails
 F. 123 followed by an exception
 G. 1234 followed by an exception
 H. An exception is thrown with no other output

 12. Given:
 3. public class Wind {
 4. public static void main(String[] args) {
 5. foreach:
 6. for(int j=0; j<5; j++) {
 7. for(int k=0; k< 3; k++) {
 8. System.out.print(" " + j);
 9. if(j==3 && k==1) break foreach;
10. if(j==0 || j==2) break;
11. }
12. }
13. }
14. }

 What is the result?
 A. 0 1 2 3

 B.1 1 1 3 3

 C. 0 1 1 1 2 3 3

 D. 1 1 1 3 3 4 4 4

 E. 0 1 1 1 2 3 3 4 4 4

 F. Compilation fails

 13. Given:
 3. public class Gotcha {
 4. public static void main(String[] args) {
 5. // insert code here
 6.
 7. }
 8. void go() {
 9. go();
10. }
11. }

 And given the following three code fragments:
I. new Gotcha().go();

II. try { new Gotcha().go(); }
 catch (Error e) { System.out.println("ouch"); }

III. try { new Gotcha().go(); }
 catch (Exception e) { System.out.println("ouch"); }

06-ch06.indd 370 8/28/2014 4:10:58 PM

Self Test 371

 When fragments I–III are added, independently, at line 5, which are true?
(Choose all that apply.)

 A. Some will not compile
 B. They will all compile
 C. All will complete normally
 D. None will complete normally
 E. Only one will complete normally
 F. Two of them will complete normally

 14. Given the code snippet:

String s = "bob";
String[] sa = {"a", "bob"};
final String s2 = "bob";
StringBuilder sb = new StringBuilder("bob");

// switch(sa[1]) { // line 1
// switch("b" + "ob") { // line 2
// switch(sb.toString()) { // line 3

// case "ann": ; // line 4
// case s: ; // line 5
// case s2: ; // line 6
}

 And given that the numbered lines will all be tested by un-commenting one switch statement
and one case statement together, which line(s) will FAIL to compile? (Choose all that apply.)

 A. line 1
 B. line 2
 C. line 3
 D. line 4
 E. line 5
 F. line 6
 G. All six lines of code will compile

 15. Given:

 1. public class Frisbee {
 2. // insert code here
 3. int x = 0;
 4. System.out.println(7/x);
 5. }
 6. }

06-ch06.indd 371 8/28/2014 4:10:58 PM

372 Chapter 6: Flow Control and Exceptions

 And given the following four code fragments:

I. public static void main(String[] args) {
II. public static void main(String[] args) throws Exception {
III. public static void main(String[] args) throws IOException {
IV. public static void main(String[] args) throws RuntimeException {

 If the four fragments are inserted independently at line 2, which are true? (Choose all that apply.)
 A. All four will compile and execute without exception
 B. All four will compile and execute and throw an exception
 C. Some, but not all, will compile and execute without exception
 D. Some, but not all, will compile and execute and throw an exception
 E. When considering fragments II, III, and IV, of those that will compile, adding a try/catch

 block around line 4 will cause compilation to fail

 16. Given:

 2. class MyException extends Exception { }
 3. class Tire {
 4. void doStuff() { }
 5. }
 6. public class Retread extends Tire {
 7. public static void main(String[] args) {
 8. new Retread().doStuff();
 9. }
10. // insert code here
11. System.out.println(7/0);
12. }
13. }

 And given the following four code fragments:

I. void doStuff() {
II. void doStuff() throws MyException {
III. void doStuff() throws RuntimeException {
IV. void doStuff() throws ArithmeticException {

 When fragments I–IV are added, independently, at line 10, which are true? (Choose all that apply.)
 A. None will compile
 B. They will all compile
 C. Some, but not all, will compile
 D. All of those that compile will throw an exception at runtime
 E. None of those that compile will throw an exception at runtime
 F. Only some of those that compile will throw an exception at runtime

06-ch06.indd 372 8/28/2014 4:10:58 PM

Self Test Answers 373

SELF TEST ANSWERS

 1. ☑ A is correct. As of Java 7 the code is legal, but the substring() method's second
argument is exclusive. If the invocation had been substring(1,4), the output would have
been –rg. Note: We hope you won't have too many exam questions that focus on API trivia
like this one. If you knew the switch was legal, give yourself "almost full credit."
☐✗ B, C, D, and E are incorrect based on the above. (OCA Objectives 2.7 and 3.5, and
Upgrade Objective 1.1)

 2. ☑ B is correct. Once s3() throws the exception to s2(), s2() throws it to s1(), and no
more of s2()'s code will be executed.
☐✗ A, C, D, E, F, G, and H are incorrect based on the above. (OCA Objectives 8.2 and 8.4)

 3. ☑ C and D are correct. Integer.parseInt can throw a NumberFormatException, and
IllegalArgumentException is its superclass (that is, a broader exception).
☐✗ A, B, E, and F are not in NumberFormatException's class hierarchy. (OCA Objective 8.5)

 4. ☑ E is correct. As of Java 7 the syntax is legal. The sa[] array receives only three arguments
from the command line, so on the last iteration through sa[], a NullPointerException is
thrown.
☐✗ A, B, C, and D are incorrect based on the above. (OCA Objectives 3.5, 5.2, and 8.5, and
Upgrade Objective 1.1)

 5. ☑ A, D, and F are correct. A is an example of the enhanced for loop. D and F are examples
of the basic for loop.
☐✗ B, C, and E are incorrect. B is incorrect because its operands are swapped. C is incorrect
because the enhanced for must declare its first operand. E is incorrect syntax to declare two
variables in a for statement. (OCA Objective 5.2)

 6. ☑ E is correct. There is no problem nesting try/catch blocks. As is normal, when an
exception is thrown, the code in the catch block runs, and then the code in the finally
block runs.
☐✗ A, B, C, D, and F are incorrect based on the above. (OCA Objectives 8.2 and 8.4)

 7. ☑ C is correct. An overriding method cannot throw a broader exception than the method
it's overriding. Class CC4's method is an overload, not an override.
☐✗ A, B, D, and E are incorrect based on the above. (OCA Objectives 8.2 and 8.4)

 8. ☑ D is correct. Did you catch the static initializer block? Remember that switches work on
"fall-through" logic, and that fall-through logic also applies to the default case, which is used
when no other case matches.
☐✗ A, B, C, E, F, and G are incorrect based on the above. (OCA Objective 3.5)

06-ch06.indd 373 8/28/2014 4:10:58 PM

374 Chapter 6: Flow Control and Exceptions

 9. ☑ D and F are correct. Because i was not initialized, case 1 will throw a NullPointerException.
Case 0 will initiate an endless loop, not a stack overflow. Case 2's downcast will not cause an
exception.
☐✗ A, B, C, E, and G are incorrect based on the above. (OCA Objectives 3.5 and 8.4)

 10. ☑ D is correct. The basic rule for unlabeled continue statements is that the current iteration
stops early and execution jumps to the next iteration. The last two continue statements are
redundant!
☐✗ A, B, C, E, and F are incorrect based on the above. (OCA Objectives 5.2 and 5.5)

 11. ☑ H is correct. It's true that the value of String s is 123 at the time that the divide-by-zero
exception is thrown, but finally() is not guaranteed to complete, and in this case finally()
never completes, so the System.out.println (S.O.P) never executes.
☐✗ A, B, C, D, E, F, and G are incorrect based on the above. (OCA Objective 8.2)

 12. ☑ C is correct. A break breaks out of the current innermost loop and carries on. A labeled
break breaks out of and terminates the labeled loops.
☐✗ A, B, D, E, and F are incorrect based on the above. (OCA Objectives 5.2 and 5.5)

 13. ☑ B and E are correct. First off, go() is a badly designed recursive method, guaranteed to
cause a StackOverflowError. Since Exception is not a superclass of Error, catching an
Exception will not help handle an Error, so fragment III will not complete normally. Only
fragment II will catch the Error.
☐✗ A, C, D, and F are incorrect based on the above. (OCA Objectives 8.1, 8.2, and 8.4)

 14. ☑ E is correct. A switch's cases must be compile-time constants or enum values.
☐✗ A, B, C, D, F, and G are incorrect based on the above. (OCA Objective 3.5 and Upgrade
Objective 1.1)

 15. ☑ D is correct. This is kind of sneaky, but remember that we're trying to toughen you up for
the real exam. If you're going to throw an IOException, you have to import the java.io package
or declare the exception with a fully qualified name.
☐✗ A, B, C, and E are incorrect. A, B, and C are incorrect based on the above. E is incorrect
because it's okay both to handle and declare an exception. (OCA Objectives 8.2 and 8.5)

 16. ☑ C and D are correct. An overriding method cannot throw checked exceptions that are
broader than those thrown by the overridden method. However, an overriding method can
throw RuntimeExceptions not thrown by the overridden method.
☐✗ A, B, E, and F are incorrect based on the above. (OCA Objective 8.1)

06-ch06.indd 374 8/28/2014 4:10:58 PM

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1 / Blind Folio 1

1
Packaging, Compiling, and
Interpreting Java Code

CERTIFICATION OBJECTIVES

• The Java Platform

• Understand Packages

• Understand Package-Derived Classes

• Understand Class Structure

• Compile and Interpret Java Code

• Two-Minute Drill

Q&A Self Test

01-ch01.indd 1 23/07/15 11:01 AM

2 Chapter 1: Packaging, Compiling, and Interpreting Java Code

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

Since you are holding this book, or reading an electronic version of it, you must have an
affinity for Java. You must also have the desire to let everyone know through the Oracle
Certified Associate, Java SE 8 Programmer (OCA), certification process that you are truly

Java savvy. As such, you should either be—or have the desire to be—a Java programmer, and
in the long term, a true Java developer. You may be or plan to be a project manager heading
up a team of Java programmers and/or developers. In this case, you will need to acquire a basic
understanding of the Java language and its technologies. In either case, this book is for you.

To start, you may be wondering about the core functional elements provided by
the basic Java Standard Edition (SE) platform with regard to libraries and utilities,
and how these elements are organized. This chapter answers these questions by
discussing Java packages and classes, along with their packaging, structuring,
compilation, and interpretation processes.

When you have finished this chapter, you will have a firm understanding of
packaging Java classes, high-level details of common Java SE packages, and the
fundamentals of Java’s compilation and interpretation tools.

CERTIFICATION OBJECTIVE

The Java Platform
Exam Objective Compare and contrast the features and components of Java, such as
platform independence, object orientation, encapsulation, and so on

The Java language was first released in 1995 as a beta. At that time the Java
team had a radical vision. They envisioned a language that was independent of the
platform it was running on. They also wanted to create a language that was object
oriented at its core and that used all the principles that this implied. Encapsulation,
polymorphism, inheritance, and abstraction are all basic concepts upon which Java is
built. This section will review the core philosophy that makes up the Java language.

Platform Independence
When the Java language is compiled, it is targeted for execution on the Java virtual
machine, or JVM, instead of a specific hardware architecture. The compiled Java
code is called bytecode. This is why it is possible to compile the Java language on a

01-ch01.indd 2 23/07/15 11:01 AM

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

The Java Platform 3

Windows PC and execute the output on a Linux server. The only requirement for
the code to work on any computer is the presence of a compatible JVM.

The Java language extends past the PC and server, however. Many mobile phones
have embraced the power of Java as their recommended language for apps. This
allows the hardware manufacturer to change the hardware between models without
breaking the compatibility of the software. Java is even present in embedded systems
and appliances. On devices such as Blu-ray players and car infotainment systems,
Java software is often present.

It is important that you understand that platform independence does not mean
your server code will run on your Blu-ray player. Java has a few different JVM specs
for devices with different capabilities. For example, embedded systems use a JVM
with only a subset of features, and mobile phones typically use a JVM with mobile
optimized user interface libraries. All of these JVMs share a common Java core, but
platform independence is limited to compatible versions.

Java’s Object-Oriented Philosophy
Java was conceived as an object-oriented language, in contrast to the C language,
which is procedural. An object-oriented language organizes related data and code
together—a process called encapsulation. A properly encapsulated object uses data
protection and exposes only some of its data and methods. The data and methods
that are designed for internal use in the object are not exposed to other objects.

Object-oriented design also encourages abstraction, the ability to generalize
algorithms. Abstraction facilitates code reuse and flexibility. These concepts are at the
heart of the Java language. Inheritance and polymorphism are key concepts in creating
reusable code. Both are covered in much more depth in Chapters 7 and 8 of this book.

Robust and Secure
Security and robustness were major design goals when Java was created. C and C++
suffered from the misuse of pointers, memory management, and buffer overruns.
Java was architected to overcome these issues and many more.

Java was designed not to have explicit pointers. In the C language family, pointers
store a memory address to an object. This memory address can be directly altered.
Java variables store references to objects but do not allow access to, or modification
of, the memory address stored in the reference. This simplified development and
removed a level of complexity that was often the source of application instability.

Memory management was addressed in Java with the JVM’s built-in garbage
collector. When Java was introduced, many languages relied on explicit memory

01-ch01.indd 3 23/07/15 11:01 AM

4 Chapter 1: Packaging, Compiling, and Interpreting Java Code

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

management. This meant that the developer was responsible for both allocating
and deallocating the memory that was used for objects. This process could become
tedious. If it was done incorrectly, the application could leak memory and/or crash.
With Java, the JVM periodically runs the garbage collector, which looks for any objects
that have gone out of scope or that are no longer referenced, and it automatically
deallocates their memory. This frees the developer from this manual, error-prone task
and increases robustness by ensuring that memory is properly managed.

Buffer overruns are a common exploit vector found in software that does not
check for them. In a C program, when an array is created, the index used is never
automatically checked to ensure it is in bounds. In fact, an out-of-bounds index
may not even crash the program. The software will read or write to the memory
address whether it is in bounds or out, and this can create unpredictable behavior.
This can be used maliciously to alter the program in ways the developer never
intended. Java automatically checks the bounds of arrays. If an index is out-of-
bounds, an exception is thrown. This level of checking helps create both more
robust and secure software.

CERTIFICATION OBJECTIVE

Understand Packages
Exam Objective Import other Java packages to make them accessible in your code

Packaging is a common approach used to organize related classes and interfaces.
Most reusable code is packaged. Unpackaged classes are commonly found in books
and online tutorials, as well as in software applications with a narrow focus. This
section will show you how and when to package your Java classes and how to import
external classes from your Java packages. The following topics will be covered:

 ■ Package design

 ■ Package and import statements

Package Design
Packages are considered containers for classes, but they actually define where classes
will be located in the hierarchical directory structure. Packaging is encouraged by
Java coding standards to decrease the likelihood of classes colliding in the same

01-ch01.indd 4 23/07/15 11:01 AM

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

Understand Packages 5

namespace. The package name plus the class names creates the fully qualified class
name. Packaging your classes also promotes code reuse, maintainability, and the
object-oriented principle of encapsulation and modularity.

When you design Java packages, such as the grouping of classes, consider the key
areas shown in Table 1-1.

Let’s take a look at a real-world example. As program manager, suppose you
need two sets of classes with unique functionality that will be used by the same end
product. You task Developer A to build the first set and Developer B to build the
second. You do not define the names of the classes, but you do define the purpose
of the package and what it must contain. Developer A is to create several geometry-
based classes, including a point class, a polygon class, and a plane class. Developer
B is to build classes that will be included for simulation purposes, including objects
such as hot air balloons, helicopters, and airplanes. You send them off to build their
classes (without having them package their classes).

Come delivery time, they both give you a class named Plane.java—that is,
one for the geometry plane class and one for the airplane class. Now you have a
problem, because both of these source files (class files, too) cannot coexist in the
same directory because they have the same name. The solution is packaging. If you
had designated package names to the developers, this conflict never would have
happened (as shown in Figure 1-1). The lesson learned is this: Always package your
code, unless your coding project is trivial in nature.

package and import Statements
You should now have a general idea of when and why to package your source files.
Next, you need to know exactly how to do this. To place a source file into a package,
you use the package statement at the beginning of that file. You may use zero or

Package Attribute Benefits of Applying the Package Attribute

Class coupling Package dependencies are reduced with class coupling.
System coupling Package dependencies are reduced with system coupling.
Package size Typically, larger packages support reusability, whereas smaller

packages support maintainability.
Maintainability Often, software changes can be limited to a single package

when the package houses focused functionality.
Naming Consider conventions when naming your packages. Use a

reverse domain name for the package structure. Use lowercase
characters delimited with underscores to separate words in
package names.

 TABLE 1-1

Package
Attribute
Considerations

01-ch01.indd 5 23/07/15 11:01 AM

6 Chapter 1: Packaging, Compiling, and Interpreting Java Code

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

one package statements per source file. To import classes from other packages
into your source file, you may use the import statement or you may precede each
class name with its package name. The java.lang package that houses the core
language classes is imported by default.

The following code listing shows usage of the package and import statements.
You can return to this listing as we discuss the package and import statements in
detail throughout the chapter.

package com.ocaj.exam.tutorial; // Package statement
/* Imports class ArrayList from the java.util package */
import java.util.ArrayList;
/* Imports all classes from the java.io package */
import java.io.*;
public class MainClass {
 public static void main(String[] args) {
 /* Creates console from java.io package – run outside your
IDE */
 Console console = System.console();
 String planet = console.readLine(" \nEnter your favorite
 planet: ");
 /* Creates list for planets */
 ArrayList planetList = new ArrayList();
 planetList.add(planet); // Adds users input to the list
 planetList.add("Gliese 581 c"); // Adds a string to the list
 System.out.println(" \nTwo cool planets: " + planetList);
 }
}
$ Enter your favorite planet: Jupiter
$ Two cool planets: [Jupiter, Gliese 581 c]

com.ocajexam.geometry com.ocajexam.simulator

Plane

HotAirBalloon Helicopter

Plane

PolygonPoint

 FIGURE 1-1 Separate packaging of classes with the same names

01-ch01.indd 6 23/07/15 11:01 AM

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

Understand Packages 7

The package Statement
The package statement includes the package keyword, followed by the package
path delimited with periods. Table 1-2 shows valid examples of package statements.
package statements have the following attributes:

 ■ They are optional.

 ■ They are limited to one per source file.

 ■ Standard coding convention for package statements reverses the domain
name of the organization or group creating the package. For example, the
owners of the domain name ocajexam.com may use the following package
name for a utilities package: com.ocajexam.utilities.

 ■ Package names equate to directory structures. The package name com
.ocajexam.utils would equate to the directory com/ocajexam/utils.
If a class includes a package statement that does not map to the relative
directory structure, the class will not be usable.

 ■ The package names beginning with java.* and javax.* are reserved.

 ■ Package names should be lowercase. Individual words within the package
name should be separated by underscores.

The Java SE API contains several packages. These packages are detailed in Oracle’s
Online Javadoc documentation at http://docs.oracle.com/javase/8/docs/api/.

On the exam, you will see packages for the Java Abstract Window Toolkit API,
the Java Swing API, the Java Basic Input/Output API, the Java Networking API, the
Java Utilities API, and the core Java Language API. You will need to know the basic
functionality that each package/API contains.

The import Statement
An import statement enables you to include source code from other classes into a
source file at compile time. The import statement includes the import keyword
followed by the package path delimited with periods and ending with a class

Package Statement Related Directory Structure

package java.net; [directory_path]\java\net\
package com.ocajexam
.utilities;

[directory_path]\com\ocajexam\utilities\

package package_name; [directory_path]\package_name\

 TABLE 1-2

Valid package
Statements

01-ch01.indd 7 23/07/15 11:01 AM

http://docs.oracle.com/javase/8/docs/api/

8 Chapter 1: Packaging, Compiling, and Interpreting Java Code

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

name or an asterisk, as shown in Table 1-3. These import statements occur after
the optional package statement and before the class definition. Each import
statement can relate to one package only.

For maintenance purposes, it is better that you import your classes explicitly.
This will allow the programmer to determine quickly which external classes
are used throughout the class. For example, rather than using import java
.util.*, use import java.util.Vector. In this real-world example,
the coder would quickly see (with the latter approach) that the class imports
only one class and it is a collection type. In this case, it is a legacy type and
the determination to update the class with a newer collection type could be
done quickly.

Import Statement Definition
import java.net.*; Imports all the classes from the package java.net
import java.net.URL; Imports only the URL class from the package java.net
import static java.awt
.Color.*;

Imports all static members of the Color class of the package
java.awt (J2SE 5.0 onward only)

import static java.awt.
color.ColorSpace.CS_GRAY;

Imports the static member CS_GRAY of the ColorSpace class
of the package java.awt (J2SE 5.0 onward only)

 TABLE 1-3 Valid import Statements

SCENARIO & SOLUTION
To paint basic graphics and images, which package
should you use?

Use the Java AWT API package.
import java.awt.*;

To use data streams, which package should you use? Use the Java Basic I/O package.
import java.io.*;

To develop a networking application, which package
should you use?

Use the Java Networking API package.
import java.net.*;

To work with the collections framework, event model,
and date/time facilities, which package should you use?

Use the Java Utilities API package.
import java.util.*;

To utilize the core Java classes and interfaces, which
package should you use?

Use the core Java Language package, which is
imported by default.
import java.lang.*;

01-ch01.indd 8 23/07/15 11:01 AM

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

Understand Packages 9

C and C++ programmers will see some look-and-feel similarities between Java’s
import statement and C/C++’s #include statement, even though there is no
direct mapping in functionality.

The static import Statement
Static import statements were introduced in Java SE 5.0. Simply put, static import
statements allow you to import static members. The following example statements
demonstrate this:

/* Import static member ITALY */
import static java.util.Locale.ITALY;
...
System.out.println("Locale: " + ITALY); // Prints "Local: it_IT"
...

/* Imports all static members in class Locale */
import static java.util.Locale.*;
...
System.out.println("Locale: " + ITALY); // Prints "Local: it_IT"
System.out.println("Locale: " + GERMANY); // Prints "Local: de_DE"
System.out.println("Locale: " + JAPANESE); // Print "Local: ja"
...

Without the static import statements shown in the example, the direct
references to ITALY, GERMANY, and JAPANESE would be invalid and would cause
compilation issues.

// import static java.util.Locale.ITALY;
...
System.out.println("Locale: " + ITALY); // Won’t compile

EXERCISE 1-1

Replacing Implicit import Statements with Explicit import Statements
Consider the following sample application:

import java.io.*;
import java.text.*;
import java.time.*;
import java.time.format.*;
import java.util.*;
import java.util.logging.*;

01-ch01.indd 9 23/07/15 11:01 AM

10 Chapter 1: Packaging, Compiling, and Interpreting Java Code

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

public class TestClass {
 public static void main(String[] args) throws IOException {
 /* Ensure directory has been created */
 Files.createDirectories(Paths.get("logs"));
 /* Get the date to be used in the filename */
 DateTimeFormatter df
 = DateTimeFormatter.ofPattern("yyyyMMdd_hhmm");
 LocalDateTime now = LocalDateTime.now();
 String date = now.format(df);
 /* Set up the filename in the logs directory */
 String logFileName = "logs\\testlog-" + date + ".txt";
 /* Set up Logger */
 FileHandler myFileHandler = new FileHandler(logFileName);
 myFileHandler.setFormatter(new SimpleFormatter());
 Logger ocajLogger = Logger.getLogger("OCAJ Logger");
 ocajLogger.setLevel(Level.ALL);
 ocajLogger.addHandler(myFileHandler);
 /* Log Message */
 ocajLogger.info("\nThis is a logged information message. ");
 /* Close the file */
 myFileHandler.close();
 }
}

There can be implicit import statements that allow all necessary classes of a
package to be imported:

import java.io.* ; // Implicit import example

There can be explicit import statements that allow only the designated class or
interface of a package to be imported:

import java.io.File ; // Explicit import example

This exercise will have you using explicit import statements in lieu of the
implicit import statements for all of the necessary classes of the sample application.
If you are unfamiliar with compiling and interpreting Java programs, finish reading
this chapter and then come back to this exercise. Otherwise, let’s begin.

 1. Type the sample application into a new file and name it TestClass.java. Save
the file.

 2. Compile and run the application to ensure that you have created the file con-
tents without error: javac TestClass.java to compile, java Test-
Class to run. Verify that the log message prints to the screen. Also verify that
a file has been created in the logs subdirectory with the same message in it.

01-ch01.indd 10 23/07/15 11:01 AM

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

Understand Package-Derived Classes 11

 3. Comment out all of the import statements:
//import java.io.*;
//import java.text.*;
// import java.time.*;
// import java.time.format.*;
//import java.util.*;
//import java.util.logging.*;

 4. Compile the application: javac TestClass.java. You will be presented
with several compiler errors related to the missing class imports. As an
example, the following illustration demonstrates the errors that are displayed
when only the java.io package has been commented out:

 5. For each class that cannot be found, use the online Java Specification API to
determine which package it belongs to and then update the source file with the
necessary explicit import statement. Once completed, you will have replaced
the four implicit import statements with nine explicit import statements.

 6. Run the application again to ensure that the application works with the explicit
import statements the same way it did with the implicit import statements.

Understand Package-Derived Classes
Oracle includes more than 200 packages in the Java SE 8 API. Each package has
a specific focus. Fortunately, you need to be familiar with only a few of them for
the OCA exam. These may include packages for Java utilities, basic input/output,
networking, Abstract Window Toolkit (AWT), Swing, and data/time. The java data/
time classes will be covered in more detail in Chapter 10.

01-ch01.indd 11 23/07/15 11:01 AM

12 Chapter 1: Packaging, Compiling, and Interpreting Java Code

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

The following sections address these APIs:

 ■ Java Utilities API

 ■ Java Basic Input/Output API

 ■ Java Networking API

 ■ Java Abstract Window Toolkit API

 ■ Java Swing API

 ■ JavaFX

Java Utilities API
The Java Utilities API is contained in the package java.util. This API provides
functionality for a variety of utility classes. The API’s key classes and interfaces
can be divided into several categories. Categories of classes that may be seen
on the exam include the Java Collections Framework, date and time facilities,
internationalization, and some miscellaneous utility classes.

Of these categories, the Java Collections Framework pulls the most weight
because it is frequently used and provides the fundamental data structures
necessary to build valuable Java applications. Table 1-4 details the classes and
interfaces of the Collections API that you may see referenced on the exam.

To assist collections in sorting where the ordering is not natural, the Collections
API provides the Comparator interface. Similarly, the Comparable interface that
resides in the java.lang package is used to sort objects by their natural ordering.

Interface Implementations Description

List ArrayList, LinkedList, Vector Data structures based on positional access.
Map HashMap, Hashtable,

LinkedHashMap, TreeMap
Data structures that map keys to values.

Set HashSet, LinkedHashSet, TreeSet Data structures based on element
uniqueness.

Queue PriorityQueue Queues typically order elements in a first
in, first out (FIFO) manner. Priority queues
order elements according to a supplied
comparator.

 TABLE 1-4 Various Classes of the Java Collections Framework

01-ch01.indd 12 23/07/15 11:01 AM

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

Understand Package-Derived Classes 13

Various other classes and interfaces reside in the java.util package. Legacy
date and time facilities are represented by the Date, Calendar, and TimeZone
classes. Geographical regions are represented by the Locale class. The Currency
class represents currencies per the ISO 4217 standard. A random-number generator
is provided by the Random class. And StringTokenizer breaks strings into
tokens. Several other classes exist within java.util, and these (and the collection
interfaces and classes) are classes that you may find yourself commonly using on the
job. These utilities classes are represented in Figure 1-2.

Many packages have related classes and interfaces with unique functionality, so
they are included in their own subpackages. For example, regular expressions are
stored in a subpackage of the Java utilities (java.util) package. The subpackage
is named java.util.regex and houses the Matcher and Pattern classes.
Where needed, consider creating subpackages for your own projects.

java.util

Date Calendar TimeZone Locale

Currency Random StringTokenizer Timer

Represents an
instance in time

Provides
conversions of

time instances to
calendar �elds

Represents a
time zone and

adjusts for daylight
savings time

Represents a
geographical,

political, or cultural
region

Represents a
currency: ISO

4217

Provides a random
number generator

Provides a means
to break a string

into tokens

Provides a task
scheduling facility

 FIGURE 1-2 Various utility classes

01-ch01.indd 13 23/07/15 11:01 AM

14 Chapter 1: Packaging, Compiling, and Interpreting Java Code

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

Java Basic Input/Output API
The Java Basic Input/Output API is contained in the package java.io. This API
provides functionality for general system input and output in relation to data streams,
serialization, and the file system. Data-stream classes include byte-stream subclasses
of the InputStream and OutputStream classes. Data-stream classes also include
character-stream subclasses of the Reader and Writer classes. Figure 1-3 depicts
part of the class hierarchy for the Reader and Writer abstract classes.

Other important java.io classes and interfaces include File, FileDescriptor,
FilenameFilter, and RandomAccessFile. The File class provides a
representation of file and directory pathnames. The FileDescriptor class
provides a means to function as a handle for opening files and sockets. The
FilenameFilter interface, as its name implies, defines the functionality to filter
filenames. The RandomAccessFile class allows for the reading and writing of files
to specified locations.

In JDK 7, the NIO.2 API was introduced in the package java.nio. This included
the useful Paths interface, the Path class, and the Files class. The Files
class has lines, list, walk, and find methods that work hand-in-hand with
the Stream API. All of this is beyond the scope of the exam but is useful to know.
The following code snippet provides a quick look at what you can do with the API
and other new features of Java. You’ll see the lambda expression-related code in
Chapter 11 (for example, p -> { statements; }).

// Print out .txt file names in a given folder
try {
 Files.walk(Paths.get("C:\\opt\\dnaProg\\users\\docs")).forEach(p -> {
 if (p.getFileName().toString().endsWith(".txt")) {
 System.out.println("Text doc:" + p.getFileName());
 }
 });
 } catch (IOException e) {
 e.printStackTrace();
}

The Java Networking API
The Java Networking API is contained in the package java.net. This API
provides functionality in support of creating network applications. The API’s key
classes and interfaces are represented in Figure 1-4. You will probably see few,
if any, of these classes on the exam, but the figure will help you conceptualize

01-ch01.indd 14 23/07/15 11:01 AM

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

Understand Package-Derived Classes 15

what’s in the java.net package. The improved performance I/O API (java
.nio) package, which provides for nonblocking networking and the socket factory
support package (javax.net), is not included on the exam.

Java Abstract Window Toolkit API
The Java Abstract Window Toolkit API is contained in the package java.awt.
This API provides functionality for creating heavyweight components with regard to
creating user interfaces and painting associated graphics and images. The AWT
API was Java’s original GUI API and has been superseded by the Swing API. Where
Swing has been recommended over AWT, certain pieces of the AWT API still

 FIGURE 1-3 Reader and Writer class hierarchy

Java.io

Reader

Bu�eredReader

PipedReader InputStreamReader

FileReader

FilterReader

Writer

Bu�eredWriter

PipedWriter OutputStreamWriter

FileWriter

PrintWriter

FilterWriter

java.net

Socket ServerSocket URL Inet4Address

Provides for the
implementation
of client sockets

Provides for the
implementation
of server sockets

Represents a
Uniform
Resource

Locator (URL)

Represents an
Internet

Protocol version
4 (IPv4) address

Inet6Address

Represents an
Internet

Protocol version
6 (IPv6) address

 FIGURE 1-4 Various classes of the Networking API

01-ch01.indd 15 23/07/15 11:01 AM

16 Chapter 1: Packaging, Compiling, and Interpreting Java Code

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

remain commonly used, such as the AWT Focus subsystem that was reworked
in J2SE 1.4. The AWT Focus subsystem provides for navigation control between
components. Figure 1-5 depicts these major AWT elements.

Java Swing API
The Java Swing API is contained in the package javax.swing. This API provides
functionality for creating lightweight (pure-Java) containers and components. The
Swing API, providing a more sophisticated set of GUI components, supersedes the
AWT API. Many of the Swing classes are simply prefaced with the addition of “J” in
contrast to the legacy AWT component equivalent. For example, Swing uses the class
JButton to represent a button container, whereas AWT uses the class Button.

Swing also provides look-and-feel support, allowing for universal style changes
of the GUI’s components. Other features include tooltips, accessibility functionality,
an event model, and enhanced components such as tables, trees, text components,

java.awt

AWT Heavyweight
Component API

AWT Focus
Subsystem

 FIGURE 1-5

AWT major
elements

SCENARIO & SOLUTION
You need to create basic Java Swing components such
as buttons, panes, and dialog boxes. Provide the code
to import the necessary classes of a package.

// Java Swing API package
import javax.swing.*;

You need to support text-related aspects of your Swing
components. Provide the code to import the necessary
classes of a package.

// Java Swing API text subpackage
import javax.swing.text.*;

You need to implement and configure basic pluggable
look-and-feel support. Provide the code to import the
necessary classes of a package.

// Java Swing API plaf subpackage
import javax.swing.plaf.*;

You need to use Swing event listeners and adapters.
Provide the code to import the necessary classes of
a package.

// Java Swing API event subpackage
import javax.swing.event.*;

01-ch01.indd 16 23/07/15 11:01 AM

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

Understand Package-Derived Classes 17

sliders, and progress bars. Some of the Swing API’s key classes are represented in
Figure 1-6.

The Swing API makes excellent use of subpackages, with 18 of them in Java SE 8.
As mentioned earlier, when common classes are separated into their own packages,
code usability and maintainability are enhanced.

Swing takes advantage of the model-view-controller (MVC) architecture. The
model represents the current state of each component. The view is the representation
of the components on the screen. The controller is the functionality that ties the UI
components to events. Although understanding the underlying architecture of Swing
is important, it’s not necessary for the exam. For comprehensive information on the
Swing API, look to the book Swing: A Beginner’s Guide, by Herbert Schildt (McGraw-
Hill Professional).

It’s good to be familiar with the package prefixes java and javax. The prefix
java is commonly used for the core packages. The prefix javax is commonly
used for packages that comprise Java standard extensions. Take special notice
of the prefix usage in the AWT and Swing APIs: java.awt and javax.swing.
Also note that JavaFX will be replacing Swing as the GUI toolkit for Java SE. Its
prefix is javafx.

JavaFX API
JavaFX is Java’s latest technology for creating rich user interfaces. It is designed to
provide lightweight, hardware-accelerated interfaces. JavaFX provides a similar set of
features to the Swing library. JavaFX is intended to replace Swing in the same manner
that Swing replaced AWT. The JavaFX libraries are part of the javafx package.

Javax.swing

JTextComponent JPanel JLabel

JComponent

JTable

JDialog JFrame

AbstractButton

JTextArea JToolTip JMenuBar JButton

 FIGURE 1-6 Various classes of the Swing API

01-ch01.indd 17 23/07/15 11:01 AM

18 Chapter 1: Packaging, Compiling, and Interpreting Java Code

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

JavaFX best practices suggest that the MVC architecture be used when designing
applications. FXML, an XML-based markup language, has been created for defining
user interfaces. Many of the more than 60 UI controls can be styled by using
Cascading Style Sheets (CSS). These features together represent a powerful new
way to create user interfaces. JavaFX makes going from whiteboard design to
implemented software faster than ever before. A great reference for JavaFX is
Introducing JavaFX 8 Programming, by Herbert Schildt (Oracle Press).

JavaFX is the latest technology for creating user interfaces. Oracle is actively
promoting this technology as the go-to tool kit. However, the Swing libraries
are not going away anytime soon. In Java 8, both JavaFX and Swing are fully
supported and can be used interchangeably. The SwingNode class allows Swing
elements to be embedded in JavaFX. The JFXPanel will allow the reverse so
that JavaFX elements can be used in a Swing applications.

CERTIFICATION OBJECTIVE

Understand Class Structure
Exam Objective Define the structure of a Java class

You must understand the structure of a Java class to do well on the exam and
to have a promising career with Java. It would help to have a fundamental knowledge
of Java naming conventions as well as knowledge of the typical separators that are
seen in Java source code (such as comment separators and brackets for enclosing
entities). These topics are covered in the following sections:

 ■ Naming Conventions

 ■ Separators and Other Java Source Symbols

 ■ Java Class Structure

Naming Conventions
Naming conventions are rules for the usage and application of characters in creation
of identifiers, methods, class names, and so forth, throughout your code base. If
some of your team members are not applying naming conventions to their code, you
should encourage them to do so, for the good of the effort and for maintainability
aspects for after the code is deployed.

01-ch01.indd 18 23/07/15 11:01 AM

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

Understand Class Structure 19

The popular article, “How to Write Unmaintainable Code,” by Roedy Green, is
worth reading (http://thc.org/root/phun/unmaintain.html). It brings to light, in
a comical way, the challenges that can occur with maintaining code when there
is a blatant or intentional disregard to software development best practices. On
the flip-side, The Passionate Programmer: Creating a Remarkable Career in Software
Development, by Chad Fowler (Pragmatic Bookshelf, 2009), encourages the
software developer to be the best that he or she can be.

You may encounter people who will come up with their own naming conventions.
Although this is better than not applying any convention, an outsider trying to maintain
that person’s code would need to learn the original convention and apply it as well
for consistency. Fortunately, the Java community does subscribe to a shared thought
on how naming conventions should be applied to the many different elements in
Java. Table 1-5 describes these conventions in a simple manner. When applying

Element Lettering Characteristic Example

Class name Begins uppercase, continues
CamelCase

Noun SpaceShip

Interface name Begins uppercase, continues
CamelCase

Adjective ending with “able”
or “ible” when providing a
capability; otherwise a noun

Dockable

Method name Begins lowercase, continues
CamelCase

Verb, may include adjective
or noun

orbit

Instance and static
variables names

Begins lowercase, continues
CamelCase

Noun moon

Parameters and
local variables

Begins lowercase, continues
CamelCase if multiple
words are necessary

Single words, acronyms, or
abbreviations

lop (line of
position)

Generic type
parameters

Single uppercase letter The letter T is recommended T

Constant All uppercase letters Multiple words separated by
underscores

LEAGUE

Enumeration Begins uppercase, continues
CamelCase; the set of
objects should be all
uppercase

Noun enum
Occupation
{MANNED,
SEMI_MANNED,
UNMANNED}

Package All lowercase letters Public packages should be
the reversed domain name of
the org

com.ocajexam.sim

 TABLE 1-5 Java Naming Conventions

01-ch01.indd 19 23/07/15 11:01 AM

20 Chapter 1: Packaging, Compiling, and Interpreting Java Code

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

naming conventions, you should strive to use meaningful and unambiguous names.
And remember that naming conventions exist for the primary goal of making
Java programs more readable, and therefore maintainable. The practice of using
CamelCase—using uppercase letters for the first characters in compound words—is
part of the Java naming conventions.

Separators and Other Java Source Symbols
The Java programming language makes use of several separators and symbols to aid
in the structuring of the source code in a software program. Table 1-6 details these
separators and symbols.

Symbol Description Purpose

() Parentheses Encloses set of method arguments, encloses cast types, adjusts
precedence in arithmetic expressions

{} Braces Encloses blocks of codes, initializes arrays
[] Box brackets Declares array types, initializes arrays
< > Angle brackets Encloses generics
; Semicolon Terminates statement at the end of a line
, Comma Separates identifiers in variable declarations, separates values,

separates expressions in a for loop
. Period Delineates package names, selects an object’s field or method,

supports method chaining
: Colon Follows loop labels
‘ ‘ Single quotes Defines a single character
-> Arrow operator Separates left-side parameters from the right-side expression
“ “ Double quotes Defines a string of characters
// Forward slashes Indicates a single-line comment
/* */ Forward slashes with

asterisks
Indicates a blocked comment for multiple lines

/** */ Forward slashes with a
double and single asterisk

Indicates Javadoc comments

 TABLE 1-6 Symbols and Separators

01-ch01.indd 20 23/07/15 11:01 AM

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

Understand Class Structure 21

Java Class Structure
Every Java program has at least one class. A Java class has a signature, optional
constructors, optional data members (fields), and optional methods, as outlined here:

[modifiers] class classIdentifier [extends superClassIdentifier]
[implements interfaceIdentifier1, interfaceIdentifier2, etc.] {
 [data members]
 [constructors]
 [methods]
}

Each class may extend one and only one superclass. Each class may implement one
or more interfaces. Interfaces are separated by commas.

The following SpaceShip class shows typical elements annotated with
comments. The file containing this SpaceShip class must be called SpaceShip
.java. Note that the class declaration extends the Ship class and implements
the Dockable interface. The Dockable interface includes the dockShip
method, which is overridden here. Ship class methods would be inherited by
the SpaceShip class. Chapters 4–7 go into more comprehensive details about
creating and working with classes.

The following code shows the structure of a typical class:

package com.ocajexam.craft_simulator;

public class SpaceShip extends Ship implements Dockable {

 // Data Members
 public enum ShipType {
 FRIGATE, BATTLESHIP, MINELAYER, ESCORT, DEFENSE
 }
 ShipType shipType = ShipType.BATTLESHIP;

 // Constructors
 public SpaceShip() {
 System.out.println("\nSpaceShip created with default ship type.");
 }
 public SpaceShip(ShipType shipType) {
 System.out.println("\nSpaceShip created with specified ship type.");
 this.shipType = shipType;
 }

 // Methods
 @Override

01-ch01.indd 21 23/07/15 11:01 AM

22 Chapter 1: Packaging, Compiling, and Interpreting Java Code

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

 public void dockShip () {
 // TODO
 }
 @Override
 public String toString() {
 String shipTypeRefined = this.shipType.name().toLowerCase();
 return "The pirate ship is a " + shipTypeRefined + " ship.";
 }
}

This SpaceShip class can be instantiated as demonstrated in the following code:

package com.ocajexam.craft_simulator;
import com.ocajexam.craft_simulator.PirateShip.ShipType;
public class SpaceShipSimulator {

 public static void main(String[] args) {

 // Create SpaceShip object with default ship type
 SpaceShip ship1 = new SpaceShip ();
 // Prints "The pirate ship is a battleship."
 System.out.println(ship1);

 // Create SpaceShip object with specified ship type
 SpaceShip ship2 = new SpaceShip (ShipType.FRIGATE);
 // Prints "The pirate ship is a frigate ship."
 System.out.println(ship2);
 }
}

The override annotation (@Override) indicates that a method declaration
intends on overriding a method declaration in the class’s supertype.

CERTIFICATION OBJECTIVE

Compile and Interpret Java Code
Exam Objective Create executable Java applications with a main method, run a
program from the command line, including console output

The Java Development Kit (JDK) includes several utilities for compiling, debugging,
and running Java applications. This section details two utilities from the kit: the Java

01-ch01.indd 22 23/07/15 11:01 AM

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

Compile and Interpret Java Code 23

compiler and the Java interpreter. For more information on the JDK and its other
utilities, see Chapter 10.

Java Compiler
Because we’ll need a sample application to use for our Java compiler and interpreter
exercises, we’ll employ the simple GreetingsUniverse.java source file,
shown in the following listing, throughout the section. This sample includes the
main method used as the entry point of the executed code. When the program is
started, this is the first method to be called by the JVM. The main method shown
here contains one line of code. This line,

System.out.println("Greetings, Universe!")

will print

Greetings, Universe!

to standard output. This output would typically be displayed on a Java application
that was started from a console.

public class GreetingsUniverse {
 public static void main(String[] args) {
 System.out.println("Greetings, Universe!");
 }
}

Let’s take a look at compiling and interpreting simple Java programs along with
their most basic command-line options.

Compiling Your Source Code
The Java compiler is only one of several tools in the JDK. When you have time,
inspect the other tools resident in the JDK’s bin folder, as shown in Figure 1-7. For
the scope of the OCA exam, you will need to know the details surrounding only the
compiler and interpreter.

The Java compiler simply converts Java source files into bytecode. The Java
compiler’s usage is as follows:

javac [options] [source files]

The most straightforward way to compile a Java class is to preface the Java source
files with the compiler utility from the command line: javac.exe FileName
.java. The .exe is the standard executable file extension on Windows machines

01-ch01.indd 23 23/07/15 11:01 AM

24 Chapter 1: Packaging, Compiling, and Interpreting Java Code

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

and is optional. The .exe extension is not present on executables on UNIX-like
systems.

javac GreetingsUniverse.java

This will result in a bytecode file being produced with the same preface, such as
GreetingsUniverse.class. This bytecode file will be placed into the same
folder as the source code, unless the code is packaged and/or it’s been told via a
command-line option to be placed somewhere else.

You will find that many projects use Apache Ant and/or Maven build environments.
Understanding the fundamentals of the command-line tools is necessary for
writing and maintaining the scripts associated with these build products.

Compiling Your Source Code with the -d Option
You may want to specify explicitly where you would like the compiled bytecode
class files to go. You can accomplish this by using the -d option:

javac -d classes GreetingsUniverse.java

This command-line structure will place the class file into the classes directory,
and since the source code was packaged (that is, the source file included a package
statement), the bytecode will be placed into the relative subdirectories.

[present working directory]\classes\com\ocajexam\tutorial\
 GreetingsUniverse.class

 FIGURE 1-7 Java Development Kit utilities

01-ch01.indd 24 23/07/15 11:01 AM

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

Compile and Interpret Java Code 25

Compiling Your Code with the -classpath Option
If you want to compile your application with user-defined classes and packages,
you may need to tell the JVM where to look by specifying them in the classpath.
This classpath inclusion is accomplished by telling the compiler where the desired
classes and packages are with the -cp or -classpath command-line option. In
the following compiler invocation, the compiler includes in its compilation any
source files that are located under the 3rdPartyCode\classes directory, as well as any
classes located in the present working directory (the period). The -d option (again)
will place the compiled bytecode into the classes directory.

javac -d classes -cp 3rdPartyCode\classes\;. GreetingsUniverse
 .java

Note that you do not need to include the classpath option if the classpath is
defined with the CLASSPATH environment variable, or if the desired files are in the
present working directory.

On Windows systems, classpath directories are delimited with backward slashes
and paths are delimited with semicolons:

-classpath .;\dir_a\classes_a\;\dir_b\classes_b\

INSIDE THE EXAM

Command-Line Tools

Most projects use integrated development
environments (IDEs) to compile and execute
code. The clear benefit in using IDEs is that
building and running code can be as easy as
stepping through a couple of menu options
or clicking a hot key. The disadvantage is
that even though you may establish your
settings through a configuration dialog and
see the commands and subsequent arguments
in one of the workspace windows, you are
not getting direct experience in repeatedly
creating the complete structure of the

commands and associated arguments by
hand. The exam is structured to validate that
you have experience in scripting compiler
and interpreter invocations. Do not take
this prerequisite lightly. Take the exam only
after you have mastered when and how
to use the tools, switches, and associated
arguments. At a later time, you can consider
taking advantage of the “shortcut” features
of popular IDEs such as those provided
by NetBeans, Eclipse, IntelliJ IDEA, and
JDeveloper.

INSIDE THE EXAM

01-ch01.indd 25 23/07/15 11:01 AM

26 Chapter 1: Packaging, Compiling, and Interpreting Java Code

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

On POSIX-based systems, classpath directories are delimited with forward
slashes and paths are delimited with colons:

-classpath .:/dir_a/classes_a/:/dir_b/classes_b/

Again, the period represents the present (or current) working directory.

Know your switches. The
designers of the exam will try to throw you
by presenting answers with mix-matching
compiler and interpreter switches. You
may even see some make-believe switches
that do not exist anywhere. For additional

preparation, query the commands’ complete
set of switches by typing java -help or
javac -help. Switches are also known as
command-line parameters, command-line
switches, options, and flags.

Java Interpreter
Interpreting the Java files is the basis for creating the Java application, as shown in
Figure 1-8. Let’s examine how to invoke the interpreter and its command-line options.

java [-options] class [args…]

Interpreting Your Bytecode
The Java interpreter is invoked with the java[.exe] command. Use it to interpret
bytecode and execute your program.

You can easily invoke the interpreter on a class that’s not packaged, as follows:

java MainClass

GreetingsUniverse.java Java Interpreter
(java)

GreetingsUniverse
application

Java Compiler
(javac)

GreetingsUniverse.class

 FIGURE 1-8 Bytecode conversion

01-ch01.indd 26 23/07/15 11:01 AM

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

Compile and Interpret Java Code 27

You can optionally start the program with the javaw command on Microsoft
Windows to exclude the command window. This is a nice feature with GUI-based
applications, because the console window is often not necessary.

javaw.exe MainClass

Similarly, on POSIX-based systems, you can use the ampersand to run the
application as a background process:

java MainClass &

Interpreting Your Code with the -classpath Option
When interpreting your code, you may need to define where certain classes and
packages are located. You can find your classes at runtime when you include
the -cp or -classpath option with the interpreter. If the classes you want to
include are packaged, then you can start your application by pointing the full path
of the application to the base directory of classes, as in the following interpreter
invocation:

java -cp classes com.ocajexam.tutorial.MainClass

The delimitation syntax is the same for the -cp and -classpath options, as
defined earlier in the “Compiling Your Code with the -classpath Option” section.

Interpreting Your Bytecode with the -D Option
The -D command-line option allows for the setting of new property values. The
usage is as follows:

java -D<name>=<value> class

The following single-file application comprising the PropertiesManager
class prints out all of the system properties:

import java.util.Properties;
public class PropertiesManager {
 public static void main(String[] args) {
 if (args.length == 0) {System.exit(0);}
 Properties props = System.getProperties();
 /* New property example */

 props.setProperty("new_property2", "new_value2");
 switch (args[0]) {
 case "-list_all":
 props.list(System.out); // Lists all properties

01-ch01.indd 27 23/07/15 11:01 AM

28 Chapter 1: Packaging, Compiling, and Interpreting Java Code

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

 break;
 case "-list_prop":
 /* Lists value */
 System.out.println(props.getProperty(args[1]));
 break;
 default:
 System.out.println("Usage: java
 PropertiesManager [-list_all]");
 System.out.println(" java
 PropertiesManager [-list_prop [property]]");
 break;
 }
 }
}

Let’s run this application while setting a new system property called new_
property1 to the value of new_value1:

java -Dnew_property1=new_value1 PropertiesManager -list_all

You’ll see in the standard output that the listing of the system properties includes
the new property that we set and its value:

...
new_property1=new_value1
java.specification.name=Java Platform API Specification
...

Optionally, you can set a value by instantiating the Properties class and then
setting a property and its value with the setProperty method.

To help you conceptualize system properties a little better, Table 1-7 details a
subset of the standard system properties.

Retrieving the Version of the Interpreter with the -version Option
The -version command-line option is used with the Java interpreter to return the
version of the JVM and exit. Don’t take the simplicity of the command for granted, as
the designers of the exam may try to trick you by including additional arguments
after the command. Take the time to toy with the command by adding arguments and
putting the -version option in various places. Do not make any assumptions about
how you think the application will respond. Figure 1-9 demonstrates varying results
based on where the -version option is used.

Check out the other JDK utilities at your disposal. Java Flight Recorder and Java
Mission Control in particular are valuable GUI-based tools that are used to monitor,
profile, and collect runtime information.

01-ch01.indd 28 23/07/15 11:01 AM

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

Compile and Interpret Java Code 29

System Property Property Description

file.separator The platform-specific file separator (/ for POSIX, \ for Windows)
java.class.path The classpath as defined for the system’s environment variable
java.class.version The Java class version number
java.home The directory of the Java installation
java.vendor The vendor supplying the Java platform
java.vendor.url The vendor’s Uniform Resource Locator
java.version The version of the Java Interpreter/JVM
line.separator The platform-specific line separator (\r on Mac OS 9, \n for POSIX,

\r\n for Microsoft Windows)
os.arch The architecture of the operating system
os.name The name of the operating system
os.version The version of the operating system
path.separator The platform-specific path separator (: for POSIX, ; for Windows)
user.dir The current working directory of the user
user.home The home directory of the user
user.language The language code of the default locale
user.name The username for the current user
user.timezone The system’s default time zone

 TABLE 1-7 Subset of System Properties

 FIGURE 1-9

The -version
command-line
option

01-ch01.indd 29 23/07/15 11:01 AM

30 Chapter 1: Packaging, Compiling, and Interpreting Java Code

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

EXERCISE 1-2

Compiling and Interpreting Packaged Software
When you compile and run packaged software from an IDE, the execution process
can be as easy as clicking a run icon, as the IDE will maintain the classpath for you
and will also let you know if anything is out of sorts. When you try to compile and
interpret the code yourself from the command line, you will need to know exactly
how to path your files. Consider our sample application that is placed in the com
.ocajexam.tutorial package (that is, the com/ocajexam/tutorial directory).

package com.ocajexam.tutorial;
public class GreetingsUniverse {
 public static void main(String[] args) {
 System.out.println("Greetings, Universe!");
 }
}

This exercise will have you compiling and running the application with new
classes created in a separate package.

 1. Compile the program:
javac -d . GreetingsUniverse.java

 2. Run the program to ensure it is error free:
java -cp . com.ocajexam.tutorial.GreetingsUniverse

 3. Create three classes named Earth, Mars, and Venus and place them in the
com.ocajexam.tutorial.planets package. Create constructors that
will print the names of the planets to standard output. The details for the
Earth class are given here as an example of what you will need to do:
package com.ocajexam.tutorial.planets;
public class Earth {
 public Earth {
 System.out.println("Hello from Earth!");
 }
}

 4. Instantiate each class from the main program by adding the necessary code
to the GreetingsUniverse class.
Earth e = new Earth();

01-ch01.indd 30 23/07/15 11:01 AM

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

Certification Summary 31

 5. Ensure that all of the source code is in the paths src/com/ocajexam/tutorial/
and src/com/ocajexam/tutorial/planets/.

 6. Determine the command-line arguments needed to compile the complete
program. Compile the program, and debug where necessary.

 7. Determine the command-line arguments needed to interpret the program.
Run the program.

 The standard output will read as follows:
$ Greetings, Universe!
Hello from Earth!
Hello from Mars!
Hello from Venus!

CERTIFICATION SUMMARY
This chapter discussed packaging, structuring, compiling, and interpreting Java
code. The chapter started with a discussion on the importance of organizing your
classes into packages as well as using the package and import statements to
define and include different pieces of source code. Through the middle of the
chapter, we discussed the key features of commonly used Java packages: java.awt,
javax.swing, java.net, java.io, and java.util. We discussed the basic
structure of a Java class. We then concluded the chapter by providing detailed
information on how to compile and interpret Java source and class files and how to
work with their command-line options. At this point, you should be able to (outside
of an IDE) package, build, and run basic Java programs independently.

Certification Summary

01-ch01.indd 31 23/07/15 11:01 AM

32 Chapter 1: Packaging, Compiling, and Interpreting Java Code

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

TWO-MINUTE DRILL

Understand Packages

 ☐ Packages are containers for classes.
 ☐ A package statement defines the directory path where files are stored.
 ☐ A package statement uses periods for delimitation.
 ☐ Package names should be lowercase and separated with underscores

between words.
☐ Package names beginning with java.* and javax.* are reserved.
☐ There can be zero or one package statement per source file.
☐ An import statement is used to include source code from external classes.
☐ An import statement occurs after the optional package statement and

before the class definition.
 ☐ An import statement can define a specific class name to import.
 ☐ An import statement can use an asterisk to include all classes within a

given package.

Understand Package-Derived Classes

☐ The Java Abstract Window Toolkit API is included in the java.awt package
and subpackages.

 ☐ The java.awt package includes GUI creation and painting graphics and
images functionality.

☐ The Java Swing API is included in the javax.swing package and
subpackages.

 ☐ The javax.swing package includes classes and interfaces that support
lightweight GUI component functionality.

☐ The Java Basic Input/Output-related classes are contained in the java.io
package.

 ☐ The java.io package includes classes and interfaces that support input/
output functionality of the file system, data streams, and serialization.

☐ Java networking classes are included in the java.net package.

•

01-ch01.indd 32 23/07/15 11:01 AM

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

Two-Minute Drill 33

 ☐ The java.net package includes classes and interfaces that support basic
networking functionality that is also extended by the javax.net package.

 ☐ Fundamental Java utilities are included in the java.util package.
 ☐ The java.util package and subpackages include classes and interfaces

that support the Java Collections Framework, legacy collection classes, event
model, date and time facilities, and internationalization functionality.

Understand Class Structure

 ☐ Naming conventions are used to make Java programs more readable and
maintainable.

 ☐ Naming conventions are applied to several Java elements, including class
names, interface names, method names, instance and static variable names,
parameter and local variable names, generic type parameter names, constant
names, enumeration names, and package names.

 ☐ The preferred order of presenting elements in a class is data members, fol-
lowed by constructors, followed by methods. Note that the inclusion of each
type of element is optional.

Compile and Interpret Java Code

 ☐ The Java compiler is invoked with the javac[.exe] command.
 ☐ The .exe extension is optional on Microsoft Windows machines and is not

present on UNIX-like systems.
 ☐ The compiler’s -d command-line option defines where compiled class files

should be placed.
 ☐ The compiler’s -d command-line option will include the package location if

the class has been declared with a package statement.
 ☐ The compiler’s -classpath command-line option defines directory paths

in search of classes.
 ☐ The Java interpreter is invoked with the java[.exe] command.
 ☐ The interpreter’s -classpath switch defines directory paths to use at

runtime.
 ☐ The interpreter’s -D command-line option allows for the setting of system

property values.

01-ch01.indd 33 23/07/15 11:01 AM

34 Chapter 1: Packaging, Compiling, and Interpreting Java Code

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

 ☐ The interpreter’s syntax for the -D command-line option is
-Dproperty=value.

 ☐ The interpreter’s -version command-line option is used to return the ver-
sion of the JVM and exit.

 ☐ The –h command-line option can be applied either to the compiler or the
interpreter to print out the tool’s usage information.

01-ch01.indd 34 23/07/15 11:01 AM

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

Self Test 35

SELF TEST

Understanding Packages

 1. Which two import statements will allow for the import of the HashMap class?
 A. import java.util.HashMap;
 B. import java.util.*;
 C. import java.util.HashMap.*;
 D. import java.util.hashMap;

 2. Which statement would designate that your file belongs in the package com.ocajexam
.utilities?

 A. pack com.ocajexam.utilities;

 B. package com.ocajexam.utilities.*

 C. package com.ocajexam.utilities.*;

 D. package com.ocajexam.utilities;

 3. Which of the following is the only Java package that is imported by default?
 A. java.awt

 B. java.lang

 C. java.util

 D. java.io

Understand Package-Derived Classes

 4. The JCheckBox and JComboBox classes belong to which package?
 A. java.awt

 B. javax.awt

 C. java.swing

 D. javax.swing

 5. Which package contains the Java Collections Framework?
 A. java.io

 B. java.net

 C. java.util

 D. java.utils

01-ch01.indd 35 23/07/15 11:01 AM

36 Chapter 1: Packaging, Compiling, and Interpreting Java Code

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

 6. The Java Basic I/O API contains what types of classes and interfaces?
 A. Internationalization
 B. RMI, JDBC, and JNDI
 C. Data streams, serialization, and file system
 D. Collection API and data streams

 7. Which API provides a lightweight solution for GUI components?
 A. AWT
 B. Abstract Window Toolkit
 C. Swing
 D. AWT and Swing

 8. Consider the following illustration. What problem exists with the packaging? You may wish to
reference Appendix G of the Unified Modeling Language (UML) for assistance.

com.ocajexam.backing_beans COM.OCAJEXAM.UTILS

UtilityA UtilityBBeanBBeanA

 A. You can have only one class per package.
 B. Packages cannot have associations between them.
 C. Package com.ocajexam.backing_beans fails to meet the appropriate package naming

conventions.
 D. Package COM.OCAJEXAM.UTILS fails to meet the appropriate package naming conventions.

Understand Class Structure

 9. When apply naming conventions, which Java elements should start with an uppercase letter
and continue on using the CamelCase convention?

 A. Class names
 B. Interface names
 C. Constant names
 D. Package names
 E. All of the above

01-ch01.indd 36 23/07/15 11:01 AM

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

Self Test 37

 10. When instantiating an object with generics, should you use angle brackets, box brackets,
curly brackets, or double-quotation marks to enclose the generic type? Select the appropriate
answer.

 A. List<Integer> a = new ArrayList<Integer>();

 B. List[Integer] a = new ArrayList[Integer]();

 C. List{Integer} a = new ArrayList{Integer}();

 D. List"Integer" a = new ArrayList"Integer"();

 11. When you’re organizing the elements in a class, which order is preferred?
 A. Data members, methods, constructors
 B. Data members, constructors, methods
 C. Constructors, methods, data members
 D. Constructors, data members, methods
 E. Methods, constructors, data members

Compile and Interpret Java Code

 12. Which usage represents a valid way of compiling a Java class?
 A. java MainClass.class

 B. javac MainClass

 C. javac MainClass.source

 D. javac MainClass.java

 13. Which two command-line invocations of the Java interpreter return the version of the
interpreter?

 A. java -version

 B. java --version

 C. java -version ProgramName

 D. java ProgramName -version

 14. Which two command-line usages appropriately identify the classpath?
 A. javac -cp /project/classes/ MainClass.java

 B. javac -sp /project/classes/ MainClass.java

 C. javac -classpath /project/classes/ MainClass.java

 D. javac -classpaths /project/classes/ MainClass.java

01-ch01.indd 37 23/07/15 11:01 AM

38 Chapter 1: Packaging, Compiling, and Interpreting Java Code

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

 15. Which command-line usages appropriately set a system property value?
 A. java -Dcom.ocajexam.propertyValue=003 MainClass

 B. java -d com.ocajexam.propertyValue=003 MainClass

 C. java -prop com.ocajexam.propertyValue=003 MainClass

 D. java -D:com.ocajexam.propertyValue=003 MainClass

01-ch01.indd 38 23/07/15 11:01 AM

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

Self Test Answers 39

SELF TEST ANSWERS

Understand Packages

 1. Which two import statements will allow for the import of the HashMap class?
 A. import java.util.HashMap;
 B. import java.util.*;
 C. import java.util.HashMap.*;
 D. import java.util.hashMap;

Answer:

 ☑ A and B. The HashMap class can be imported directly via import java.util
.HashMap or with a wildcard via import java.util.*;.
☐× C and D are incorrect. C is incorrect because the answer is a static import statement that
imports static members of the HashMap class, and not the class itself. D is incorrect because
class names are case sensitive, so the class name hashMap does not equate to HashMap.

 2. Which statement would designate that your file belongs in the package com.ocajexam
.utilities?

 A. pack com.ocajexam.utilities;

 B. package com.ocajexam.utilities.*

 C. package com.ocajexam.utilities.*;

 D. package com.ocajexam.utilities;

Answer:

 ☑ D. The keyword package is appropriately used, followed by the package name delimited
with periods and followed by a semicolon.
☐× A, B, and C are incorrect. A is incorrect because the word pack is not a valid keyword.
B is incorrect because a package statement must end with a semicolon, and you cannot use
asterisks in package statements. C is incorrect because you cannot use asterisks in package
statements.

01-ch01.indd 39 23/07/15 11:01 AM

40 Chapter 1: Packaging, Compiling, and Interpreting Java Code

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

 3. Which of the following is the only Java package that is imported by default?
 A. java.awt

 B. java.lang

 C. java.util

 D. java.io

Answer:

 ☑ B. The java.lang package is the only package that has all of its classes imported by
default.
☐× A, C, and D are incorrect. The classes of packages java.awt, java.util, and
java.io are not imported by default.

Understand Package-Derived Classes

 4. The JCheckBox and JComboBox classes belong to which package?
 A. java.awt

 B. javax.awt

 C. java.swing

 D. javax.swing

Answer:

 ☑ D. Components belonging to the Swing API are generally prefaced with a uppercase J.
Therefore, JCheckBox and JComboBox would be part of the Java Swing API and not the Java
AWT API. The Java Swing API base package is javax.swing.
☐× A, B, and C are incorrect. A is incorrect because the package java.awt does not include
the JCheckBox and JComboBox classes since they belong to the Java Swing API. Note that
the package java.awt includes the CheckBox class, as opposed to the JCheckBox class.
B and C are incorrect because the package names javax.awt and java.swing do not exist.

 5. Which package contains the Java Collections Framework?
 A. java.io

 B. java.net

 C. java.util

 D. java.utils

01-ch01.indd 40 23/07/15 11:01 AM

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

Self Test Answers 41

Answer:

 ☑ C. The Java Collections Framework is part of the Java Utilities API in the java.util
package.
☐× A, B, and D are incorrect. A is incorrect because the Java Basic I/O API’s base package is
named java.io and does not contain the Java Collections Framework. B is incorrect because
the Java Networking API’s base package is named java.net and also does not contain the
Collections Framework. D is incorrect because there is no package named java.utils.

 6. The Java Basic I/O API contains what types of classes and interfaces?
 A. Internationalization

 B. RMI, JDBC, and JNDI
 C. Data streams, serialization, and file system
 D. Collection API and data streams

Answer:

 ☑ C. The Java Basic I/O API contains classes and interfaces for data streams, serialization,
and the file system.
☐× A, B, and D are incorrect. Internationalization (i18n), RMI, JDBC, JNDI, and the
Collections framework are not included in the Basic I/O API.

 7. Which API provides a lightweight solution for GUI components?
 A. AWT
 B. Abstract Window Toolkit
 C. Swing
 D. AWT and Swing

Answer:

 ☑ C. The Swing API provides a lightweight solution for GUI components, meaning that the
Swing API’s classes render using pure Java code and not native platform widgets.
☐× A, B, and D are incorrect. AWT and the Abstract Window Toolkit are one and the same
and provide a heavyweight solution for GUI components.

01-ch01.indd 41 23/07/15 11:01 AM

42 Chapter 1: Packaging, Compiling, and Interpreting Java Code

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

 8. Consider the following illustration. What problem exists with the packaging? You may wish to
reference Appendix G of the Unified Modeling Language (UML) for assistance.

com.ocajexam.backing_beans COM.OCAJEXAM.UTILS

UtilityA UtilityBBeanBBeanA

 A. You can have only one class per package.
 B. Packages cannot have associations between them.
 C. Package com.ocajexam.backing_beans fails to meet the appropriate package nam-

ing conventions.
 D. Package COM.OCAJEXAM.UTILS fails to meet the appropriate package naming

conventions.

Answer:

 ☑ D. COM.OCAJEXAM.UTILS fails to meet the appropriate package naming conventions.
Package names should be lowercase and should use an underscore between words. However,
the words in ocajexam are joined in the URL; therefore, excluding the underscore here is
acceptable. The package name should read com.ocajexam.utils.
☐× A, B, and C are incorrect. A is incorrect because being restricted to having one class in a
package is ludicrous. There is no limit. B is incorrect because packages can and frequently do
have associations with other packages. C is incorrect because com.ocajexam.backing_
beans meets appropriate packaging naming conventions.

Understand Class Structure

 9. When apply naming conventions, which Java elements should start with an uppercase letter
and continue on using the CamelCase convention?

 A. Class names
 B. Interface names
 C. Constant names
 D. Package names
 E. All of the above

01-ch01.indd 42 23/07/15 11:01 AM

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

Self Test Answers 43

Answer:

 ☑ A and B. Class names and interface names should start with an uppercase letter and
continue on using the CamelCase convention.
☐× C and D are incorrect. C is incorrect because constant names should be all uppercase
letters separated by underscores. D is incorrect because package names do not include
uppercase letters, nor do they subscribe to the CamelCase convention.

 10. When instantiating an object with generics, should you use angle brackets, box brackets,
parentheses, or double-quotation marks to enclose the generic type? Select the appropriate
answer.

 A. List<Integer> a = new ArrayList<Integer>();

 B. List[Integer] a = new ArrayList[Integer]();

 C. List{Integer} a = new ArrayList{Integer}();

 D. List"Integer" a = new ArrayList"Integer"();

Answer:

 ☑ A. Generics use angle brackets.
☐× B, C, and D are incorrect. Box brackets (B), curly brackets (C), and double quotation
marks (D) are not used to enclose the generic type.

 11. When you’re organizing the elements in a class, which order is preferred?
 A. Data members, methods, constructors
 B. Data members, constructors, methods
 C. Constructors, methods, data members
 D. Constructors, data members, methods
 E. Methods, constructors, data members

Answer:

 ☑ B. The preferred order in presenting elements in a class is to present the data members
first, followed by constructors, followed by methods.
☐× A, C, D, and E are incorrect. Although ordering the elements in these manners will not
cause any functional or compilation errors, none of these is the preferred order.

01-ch01.indd 43 23/07/15 11:01 AM

44 Chapter 1: Packaging, Compiling, and Interpreting Java Code

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

Compile and Interpret Java Code

 12. Which usage represents a valid way of compiling a Java class?
 A. java MainClass.class

 B. javac MainClass

 C. javac MainClass.source

 D. javac MainClass.java

Answer:

 ☑ D. The compiler is invoked by the javac command. When compiling a Java class, you
must include the filename, which houses the main classes, including the .java extension.
☐× A, B, and C are incorrect. A is incorrect because MainClass.class is bytecode that
is already compiled. B is incorrect because MainClass is missing the .java extension. C is
incorrect because MainClass.source is not a valid name for any type of Java file.

 13. Which two command-line invocations of the Java interpreter return the version of the
interpreter?

 A. java -version

 B. java --version

 C. java -version ProgramName

 D. java ProgramName -version

Answer:

 ☑ A and C. The -version flag should be used as the first argument. The application
will return the appropriate strings to standard output with the version information and then
immediately exit. The second argument is ignored.
☐× B and D are incorrect. B is incorrect because the version flag does not allow double
dashes. You may see double dashes for flags in utilities, especially those following the GNU
license. However, the double dashes do not apply to the version flag of the Java interpreter.
D is incorrect because the version flag must be used as the first argument or its functionality
will be ignored.

01-ch01.indd 44 23/07/15 11:01 AM

OracCertPrs5.5/ OCA Java SE 8 Programmer I Study Guide (Exam 1Z0-808) / Finegan & Liguori / 751-7 /Chapter 1

Self Test Answers 45

 14. Which two command-line usages appropriately identify the classpath?
 A. javac -cp /project/classes/ MainClass.java

 B. javac -sp /project/classes/ MainClass.java

 C. javac -classpath /project/classes/ MainClass.java

 D. javac -classpaths /project/classes/ MainClass.java

Answer:

 ☑ A and C. The option flag that is used to specify the classpath is -cp or -classpath.
☐× B and D are incorrect. The option flags -sp (B) and -classpaths (D) are invalid.

 15. Which command-line usages appropriately set a system property value?
 A. java -Dcom.ocajexam.propertyValue=003 MainClass

 B. java -d com.ocajexam.propertyValue=003 MainClass

 C. java -prop com.ocajexam.propertyValue=003 MainClass

 D. java -D:com.ocajexam.propertyValue=003 MainClass

Answer:

 ☑ A. The property setting is used with the interpreter, not the compiler. The property
name must be sandwiched between the -D flag and the equal sign. The desired value should
immediately follow the equal sign.
☐× B, C, and D are incorrect. The -d (B), -prop (C), and -D: (D) flags are invalid ways to
designate a system property.

01-ch01.indd 45 23/07/15 11:01 AM

“Oracle_LaTeX/Mastering Lambdas/ Naftalin/ 182962-8” — 2014/8/27 — 16:22

CHAPTER
1

Taking Java to
the Next Level

“Oracle_LaTeX/Mastering Lambdas/ Naftalin/ 182962-8” — 2014/8/27 — 16:22

2 Mastering Lambdas

T he changes in Java 8 are the biggest in the history of the language, combining
coordinated changes to the language, the libraries, and the virtual machine.
They promise to alter the way we think about the execution of Java programs

and to make the language åt for use in a world, soon to arrive, of massively parallel
hardware. Yet for such an important innovation, the actual changes to the language
seem quite minor. What is it about these apparently minor modiåcations that will
make such a big difference? And why should we change a programming model that
has served us so well throughout the lifetime of Java, and indeed for much longer
before that? In this chapter we will explore some of the limitations of that model and
see how the lambda-related features of Java 8 will enable Java to evolve to meet the
challenges of a new generation of hardware architectures.

1.1 From External to Internal Iteration
Let’s start with code that simply iterates over a collection of mutable objects, calling a
single method on each of them. The following code fragment constructs a collection of
java.awt.Point objects (Point is a conveniently simple library class, consisting only
of a pair (x,y) of coordinates). Our code then iterates over the collection, translating
(i.e., moving) each Point by a distance of 1 on both the x and y axes.

List<Point> pointList = Arrays.asList(new Point(1, 2), new Point(2, 3));
for (Point p : pointList) {

p.translate(1, 1);
}

Before Java 5 introduced the for-each loop, we would have written the loop like
this:

for (Iterator pointItr = pointList.iterator(); pointItr.hasNext();) {
((Point) pointItr.next()).translate(1, 1);

}

Or, in a clearer idiom (though less favored because it increases the scope of
pointItr):

Iterator pointItr = pointList.iterator();
while (pointItr.hasNext()) {

((Point) pointItr.next()).translate(1, 1);
}

Here we are asking pointList to create an Iterator object on our behalf, and
we are then using that object to access the elements of pointList in turn. This version
is still relevant, because today this is the code that the Java compiler generates to
implement the for-each loop. Its key aspect for us is that the order of access to the

“Oracle_LaTeX/Mastering Lambdas/ Naftalin/ 182962-8” — 2014/8/27 — 16:22

Chapter 1: Taking Java to the Next Level 3

elements of pointList is controlled by the Iterator—there is nothing that we can
do to change it. The Iterator for an ArrayList, for example, will return the elements
of the list in sequential order.

Why is this problematic? After all, when the Java Collections Framework was de-
signed in 1998, it seemed perfectly reasonable to dictate the access order of list ele-
ments in this way. What has changed since then?

Part of the answer lies in how hardware has been evolving. Workstations and
servers have been equipped with multiple processors for a long time, but between
the design of the Java Collections Framework in 1998 and the appearance of the årst
dual-core processors in personal computers in 2005, a revolution had taken place in
chip design. A 40-year trend of exponentially increasing processor speed had been
halted by inescapable physical facts: signal leakage, inadequate heat dissipation, and
the hard truth that, even at the speed of light, data cannot cross a chip quickly enough
for further processor speed increases.

But clock speed limitations notwithstanding, the density of chip components con-
tinued to increase. So, since it wasn’t possible to offer a 6 GHz core, the chip vendors
instead began to offer dual-core processors, each core running at 3 GHz. This trend
has continued, with currently no end in sight; at the time of the Java 8 ship date (March
2014) quad-core processors have become mainstream, eight-core processors are ap-
pearing in the commodity hardware market, and specialist servers have long been
available with dozens of cores per processor. The direction is clear, and any program-
ming model that doesn’t adapt to it will fail in the face of competition from models
that do adapt. Adaptation would mean providing developers with an accessible way
of making use of the processing power of multiple cores by distributing tasks over
them to be executed in parallel.1 Failing to adapt, on the other hand, would mean
that Java programs, bound by default to a single core, would run at a progressively
greater speed disadvantage compared to programs in languages that had found ways
to assist users in easily parallelizing their code.

The need for change is shown by the code at the start of this section, which could
only access list elements one at a time in the order dictated by the iterator. Collection
processing is not the only processor-intensive task that programs have to carry out,
but it is one of the most important. The model of iteration embodied in Java’s loop
constructs forces collection element processing into a serial straitjacket, and that is a
serious problem at a time when the most pressing requirement for runtimes—at least
as far as performance is concerned—is precisely the opposite: to distribute processing
over multiple cores. Althoughwewill see in Chapter 6 that by nomeans every problem
will beneåt from parallelization, the best cases give us speedup that is nearly linear in
the number of cores.

1The distribution of a processing task over multiple processors is often called parallelization. Even if we
dislike this word, it’s a useful shorthand that will sometimes make explanations shorter and more readable.

“Oracle_LaTeX/Mastering Lambdas/ Naftalin/ 182962-8” — 2014/8/27 — 16:22

4 Mastering Lambdas

1.1.1 Internal Iteration
The intrusiveness of the serial model of iteration becomes obvious when we imagine
imposing it on a real-world situation. If someone were to ask you to mail some letters
with the instruction “repeat the following action: if you have any more letters, take the
next one in alphabetical order of addressee’s surname and put it in the mailbox,” your
kindest thought would probably be that they have overspeciåed the task. You would
know that ordering doesn’t matter in this task, and neither does the mode—sequential
or parallel—of execution, yet it would seem you aren’t allowed to ignore them. In this
situation you might feel some sympathy with a collection forced by external iteration
to process elements serially and in a åxed order when much better strategies may be
available.

In reality, all you need to know for that real-world task is that every letter in a
bundle needs mailing; exactly how to do that should be up to you. And in the same
way, we ought to be able to tell collectionswhat should be done to each element they
contain, rather than specifying how, as external iteration does. If we could do that,
what would the code look like? Collections would have to expose a method accepting
the “what,” namely the task to be executed on each element; an obvious name for this
method is forEach. With it, we can imagine replacing the iterative code from the start
of this section with this:

pointList.forEach(/*translate the point by (1,1)*/);

Before Java 8 this would have been a strange suggestion, since java.util.List
(which is the type of pointList) has no forEachmethod and, as an interface, cannot
have one added. However, in Chapter 7 we’ll see that Java 8 overcomes this problem
with the introduction of non-abstract interface methods.

The new method Collection.forEach (actually inherited by Collection from
its superinterface Iterable) is an example of internal iteration, so called because,
although the explicit iterative code is no longer obvious, iteration is still taking place
internally. It is now managed by the forEach method, which applies its behavioral
parameter to each element of its collection.

The change from external to internal iteration may seem a small one, simply a mat-
ter of moving the work of iteration across the client-library boundary. But the conse-
quences are not small. The parallelization work that we require can now be deåned in
the collection class instead of repeatedly in every client method that must iterate over
the collection. Moreover, the implementation is free to use additional techniques such
as laziness and out-of-order execution—and, indeed, others yet to be discovered—to
get to the answer faster.

So internal iteration is necessary if a programming model is to allow collection
library writers the freedom to choose, for each collection, the best way of implement-
ing bulk processing. But what is to replace the comment in the call of forEach—how
can the collection’s methods be told what task is to be executed on each element?

“Oracle_LaTeX/Mastering Lambdas/ Naftalin/ 182962-8” — 2014/8/27 — 16:22

Chapter 1: Taking Java to the Next Level 5

1.1.2 The Command Pattern
There’s no need to go outside traditional Java mechanisms to ånd an answer to this
question. For example, we routinely create Runnable instances and pass them as ar-
guments. If you think of a Runnable as an object representing a task to be executed
when its run method is called, you can see that what we now require is very similar.
For another example, the Swing framework allows the developer to deåne an action
that will be executed in response to a number of different events—menu item selec-
tion, button press, etc.—on the user interface. If you are familiar with classical design
patterns, you will recognize this loose description of the Command Pattern.

In the case we’re considering, what command is needed? Our starting point was a
call to the translatemethod of every Point in a List. So for this example, it appears
that forEach should accept as its argument an object exposing a method that will call
translate on each element of the list. If we make this object an instance of a more
general interface, PointAction say, then we can deåne different implementations of
PointAction for different actions that we want to have iteratively executed on Point
collections:

public interface PointAction {
void doForPoint(Point p);

}

Right now, the implementation we want is

class TranslateByOne implements PointAction {
public void doForPoint(Point p) {

p.translate(1, 1);
}

}

Now we can sketch a naïve implementation of forEach:

public class PointArrayList extends ArrayList<Point> {
public void forEach(PointAction t) {

for (Point p : this) {
t.doForPoint(p);

}
}

}

and if we make pointList an instance of PointArrayList, our goal of internal
iteration is achieved with this client code:

pointList.forEach(new TranslateByOne());

“Oracle_LaTeX/Mastering Lambdas/ Naftalin/ 182962-8” — 2014/8/27 — 16:22

6 Mastering Lambdas

Of course, this toy code is absurdly specialized; we aren’t really going to write
a new interface for every element type we need to work with. Fortunately, we don’t
need to; there is nothing special about the names PointAction and doForPoint;
if we simply replace them consistently with other names, nothing changes. In the
Java 8 collections library they are called Consumer and accept. So our PointAction
interface becomes:

public interface Consumer<T> {
void accept(T t);

}

Parameterizing the type of the interface allows us to dispense with the spe-
cialized ArrayList subclass and instead add the method forEach directly to
the class itself, as is done by inheritance in Java 8. This method takes a
java.util.function.Consumer, which will receive and process each element of
the collection.

public class ArrayList<E> {
...
public void forEach(Consumer<E> c) {

for (E e : this) {
c.accept(e);

}
}

}

Applying these changes to the client code, we get

class TranslateByOne implements Consumer<Point> {
public void accept(Point p) {

p.translate(1, 1);
}

}
...
pointList.forEach(new TranslateByOne());

You may think that this code is still pretty clumsy. But notice that the clumsiness is
now concentrated in the representation of each command by an instance of a class.
In many cases, this is overkill. In the present case, for example, all that forEach really
needs is the behavior of the single method accept of the object that has been supplied
to it. State and all the other apparatus that make up the object are included only
because method arguments in Java, if not primitives, have to be object references. But
we have always needed to specify this apparatus—until now.

“Oracle_LaTeX/Mastering Lambdas/ Naftalin/ 182962-8” — 2014/8/27 — 16:22

Chapter 1: Taking Java to the Next Level 7

1.1.3 Lambda Expressions
The code that concluded the previous section is not idiomatic Java for the command
pattern. When, as in this case, a class is both small and unlikely to be reused, a more
common usage is to deåne an anonymous inner class:

pointList.forEach(new Consumer<Point>() {
public void accept(Point p) {

p.translate(1, 1);
}

});

Experienced Java developers are so accustomed to seeing code like this that we
have often forgotten how we felt when we årst encountered it. Common årst reactions
to the syntax for anonymous inner classes used in this way are that it is ugly, verbose,
and difåcult to understand quickly, even though all it is really doing is to say “do
this for each element.” You don’t have to agree completely with these judgements
to accept that any attempt to persuade developers to rely on this idiom for every
collection operation is unlikely to be very successful. And this, at last, is our cue for
the introduction of lambda expressions.2

To reduce the verbosity of this call, we should try to identify those places where
we are supplying information that the compiler could instead infer from the context.
One such piece of information is the name of the interface being implemented by the
anonymous inner class. It’s enough for the compiler to know that the declared type of
the parameter to forEach is ConsumerăTą; that is sufåcient information to allow the
supplied argument to be checked for type compatibility. Let’s de-emphasize the code
that the compiler can infer:

pointList.forEach(new Consumer<Point>() {
public void accept(Point p) {

p.translate(1, 1);
}

});

Second, what about the name of the method being overridden—in this case, accept?
There’s no way that the compiler can infer that in general. But in the case of Consumer
there is no need to infer the name, because the interface has only a single method.
This “one method interface” pattern is so useful for deåning callbacks that it has an
ofåcial status: any object to be used in the abbreviated form that we are developing
must implement an interface like this, exposing a single abstract method (this is called

2People are often curious about the origin of the name. The idea of lambda expressions comes from a
model of computation developed in the 1930s by the American mathematician Alonzo Church, in which
the Greek letter λ (lambda) represents functional abstraction. But why that particular letter? Church seems
to have liked to tease: asked about his choice, his usual explanation involved accidents of typesetting, but
in later years he had an alternative answer: “Eeny, meeny, miny, moe.”

“Oracle_LaTeX/Mastering Lambdas/ Naftalin/ 182962-8” — 2014/8/27 — 16:22

8 Mastering Lambdas

a functional interface, or sometimes a SAM interface). That gives the compiler a way
to choose the correct method without ambiguity. Again let’s de-emphasize the code
that can be inferred in this way:

pointList.forEach(new Consumer<Point>() {
public void accept(Point p) {

p.translate(1, 1);
}

});

Finally, the instantiated type of Consumer can often be inferred from the context, in
this case from the fact that when the forEach method calls accept, it supplies it with
an element of pointList, previously declared as a ListăPointą. That identiåes the
type parameter to Consumer as Point, allowing us to omit the explicit type declaration
of the argument to accept.

This is what’s left when we de-emphasize this last component of the forEach call:

pointList.forEach(new Consumer<Point>() {
public void accept(Point p) {

p.translate(1, 1);
}

});

The argument to forEach represents an object, implementing the interface
(Consumer) required by forEach, such that when accept (the only abstract method
on that interface) is called for a pointList element p, the effect will be to call
p.translate(1, 1).

Some extra syntax (“->”) is required to separate the parameter list from the expres-
sion body. With that addition, we ånally get the simple form for a lambda expression.
Here it is, being used in internal iteration:

pointList.forEach(p -> p.translate(1, 1));

If you are unused to reading lambda expressions, you may ånd it helpful for the
moment to continue to think of them as an abbreviation for a method declaration,
mentally mapping the parameter list of the lambda to that of the imaginary method,
and its body (often preceded by an added return) to the method body. In the next
chapter, we will see that it is going to be necessary to vary the simple syntax of the
preceding example for lambda expressions with multiple parameters and with more
elaborate bodies and in cases where the compiler cannot infer parameter types. But
if you have followed the reasoning that brought us to this point, you should have a
basic understanding of the motivation for the introduction of lambda expressions and
of the form that they have taken.

“Oracle_LaTeX/Mastering Lambdas/ Naftalin/ 182962-8” — 2014/8/27 — 16:22

Chapter 1: Taking Java to the Next Level 9

This section has covered a lot of ground. To summarize: we began by considering
the adaptations that our programming model needs to make in order to accommodate
the requirements of changing hardware architectures; this brought us to a review of
processing of collection elements, which in turn made us aware of the need to have
a concise way of deåning behavior for collections to execute; ånally, paring away the
excess text from anonymous inner class deånitions brought us to a simple syntax for
lambda expressions.

In the remaining sections of this chapter, we will look at some of the new idioms
that lambda expressions make possible. We will see that bulk processing of collec-
tion elements can be written in a much more expressive style, that these changes in
idiom make it much easier for library writers to incorporate parallel algorithms to take
advantage of new hardware architectures, and ånally that emphasizing functional be-
havior can improve the design of APIs. It’s an impressive list of achievements for such
an innocuous-looking change!

1.2 From Collections to Streams
Let’s extend the example of the previous section a little. In real-life programs, it’s com-
mon to process collections in a number of stages: a collection is iteratively processed
to produce a new collection, which in turn is iteratively processed, and so on. Here
is an example—rather artiåcial, in the interests of simplicity—which starts with a col-
lection of Integer instances, then applies an arbitrary transformation to produce a
collection of Point instances, and ånally ånds the maximum among the distances of
each Point from the origin.

List<Integer> intList = Arrays.asList(1, 2, 3, 4, 5);
List<Point> pointList = new ArrayList<>();
for (Integer i : intList) {

pointList.add(new Point(i % 3, i / 1));
}
double maxDistance = Double.MIN_VALUE;
for (Point p : pointList) {

maxDistance = Math.max(p.distance(0, 0), maxDistance);
}

Although it could certainly be improved, this is idiomatic Java—most developers
have seen many examples of code in this pattern—but if we look at it with fresh eyes,
some unpleasant features stand out at once. Firstly, it is very verbose, taking nine lines
of code to carry out only three operations. Secondly, the collection pointList, re-
quired only as intermediate storage, is an overhead on the operation of the program;
if the intermediate storage is very large, creating it would at best add to garbage col-
lection overheads, and at worst would exhaust available heap space. Thirdly, there is

“Oracle_LaTeX/Mastering Lambdas/ Naftalin/ 182962-8” — 2014/8/27 — 16:22

10 Mastering Lambdas

an implicit assumption, difåcult to spot, that the minimum value of an empty list is
Double.MIN_VALUE. But the worst aspect of all is the gap between the developer’s in-
tentions and the way that they are expressed in code. To understand this program, you
have to work out what it’s doing, then guess the developer’s intention (or, if you’re very
fortunate, read the comments), and only then check its correctness by matching the
operation of the program to the informal speciåcation you deduced.3 All this work is
slow and error-prone—indeed, the very purpose of a high-level language is supposed
to be to minimize it by supporting code that is as close as possible to the developer’s
mental model. So how can the gap be closed?

Let’s restate the problem speciåcation:

“Apply a transformation to each one of a collection of Integer instances
to produce a Point, then ånd the greatest distance of any of these Points
from the origin.”

If we de-emphasize the parts of the preceding code that do not correspond to the
elements of this informal speciåcation, we see what a poor match there is between
code and problem speciåcation. Omitting the årst line, in which the list intList is
initially created, we get:

List<Point> pointList = new ArrayList<>();
for (Integer i : intList) {

pointList.add(new Point(i % 3, i / 3));
}
double maxDistance = Double.MIN_VALUE;
for (Point p : pointList) {

maxDistance = Math.max(p.distance(0, 0), maxDistance);
}

This suggests a new, data-oriented way of looking at the program, one that will
look familiar if you are used to Unix pipes and ålters: we can follow the progress of
a single value from the source collection, viewing it as being transformed årst from
an Integer to a Point and second from a Point to a double. Both of these transfor-
mations can take place in isolation, without any reference to the other values being
processed—exactly the requirement for parallelization. Only with the third step, ånd-
ing the greatest distance, is it necessary for the values to interact (and even then, there
are techniques for efåciently computing this in parallel).

This data-oriented view can be represented diagrammatically, as in Figure 1-1. In
this ågure it is clear that the rectangular boxes represent operations. The connecting

3The situation is better than it used to be. Some of us are old enough to remember how much of this
kind of work was involved in writing big programs in assembler (really low-level languages, not far removed
from machine code). Programming languages have become much more expressive since then, but there is
still plenty of room for progress.

“Oracle_LaTeX/Mastering Lambdas/ Naftalin/ 182962-8” — 2014/8/27 — 16:22

Chapter 1: Taking Java to the Next Level 11

Integer Point
Calculate

max of

values

DoubleMap each i to
new

Point(i % 3, i / 3)

Map each p to
p.distance(0, 0)

intList
values values values

FIGURE 1-1. Composing streams into a data pipeline

lines represent something new, a way of delivering a sequence of values to an op-
eration. This is different from any kind of collection, because at a given moment the
values to be delivered by a connector may not all have been generated yet. These value
sequences are called streams. Streams differ from collections in that they provide an
(optionally) ordered sequence of values without providing any storage for those val-
ues; they are “data in motion,” a means for expressing bulk data operations. If the
idea of streams is new to you, it may help to imagine a kind of iterator on which the
only operation is like next, except that besides returning the next value, it can signal
that there are no more values to get. In the Java 8 collections API, streams are repre-
sented by interfaces—Stream for reference values, and IntStream, LongStream, and
DoubleStream for streams of primitive values—in the package java.util.stream.

In this view, the operations represented by the boxes in Figure 1-1 are operations
on streams. The boxes in this ågure represent two applications of an operation called
map; it transforms each stream element using a systematic rule. Looking at map alone,
we might think that we were dealing with operations on individual stream elements.
But we will soon meet other stream operations that can reorder, drop, or even insert
values; each of these operations can be described as taking a stream and transform-
ing it in some way. Each rectangular box represents an intermediate operation, one
that is not only deåned on a stream, but that also returns a stream as its output. For
example, assuming for a moment that a stream intStream forms the input to the årst
operation, the transformations made by the intermediate operations of Figure 1-1 can
be represented in code as:

Stream<Point> points = intStream.map(i -> new Point(i % 3, i / 3));
DoubleStream distances = points.mapToDouble(p -> p.distance(0, 0));

The circle at the end of the pipeline represents the terminal operation max. Terminal
operations consume a stream, optionally returning a single value, or—if the stream is
empty—nothing, represented by an empty Optional or one of its specializations (see
p. 65):

OptionalDouble maxDistance = distances.max();

“Oracle_LaTeX/Mastering Lambdas/ Naftalin/ 182962-8” — 2014/8/27 — 16:22

12 Mastering Lambdas

Pipelines like that in Figure 1-1 have a beginning, a middle, and an end. We have
seen the operations that deåned the middle and the end; what about the beginning?
The values ýowing into streams can be supplied by a variety of sources—collections,
arrays, or generating functions. In practice, a common use case will be feeding the
contents of a collection into a stream, as here. Java 8 collections expose a new method
stream() for this purpose, so the start of the pipeline can be represented as:

Stream<Integer> intStream = intList.stream();

And the complete code with which this section began has become:

OptionalDouble maxDistance =
intList.stream()

.map(i -> new Point(i % 3, i / 3))

.mapToDouble(p -> p.distance(0, 0))

.max();

This style, often called ýuent because “the code ýows,” is unfamiliar in the context
of collection processing and may seem initially difåcult to read in this context. How-
ever, compared to the successive iterations in the code that introduced this section, it
provides a nice balance of conciseness with a close correspondence to the problem
statement: “map each integer in the source intList to a corresponding Point, map
each Point in the resulting list to its distance from the origin, then ånd the maximum
of the resulting values.” The structure of the code highlights the key operations, rather
than obscuring them as in the original.

As a bonus, the performance overhead of creating and managing intermediate
collections has disappeared as well: executed sequentially, the stream code is more
than twice as fast as the loop version. Executed in parallel, virtually perfect speedup
is achieved on large data sets (for more details of the experiment, see p. 148).

1.3 From Sequential to Parallel
This chapter began with the assertion that Java now needs to support parallel process-
ing of collections, and that lambdas are an essential step in providing this support.
We’ve come most of the way by seeing how lambdas make it easy for client code
developers to make use of internal iteration. The last step is to see how internal itera-
tion of the collection classes actually implements parallelism. It’s useful to know the
principles of how this will work, although you don’t need them for everyday use—the
complexity of the implementations is well hidden from developers of client code.

Independent execution on multiple cores is accomplished by assigning a different
thread to each core, each thread executing a subtask of the work to be done—in this
case, a subset of the collection elements to be processed. For example, given a four-

“Oracle_LaTeX/Mastering Lambdas/ Naftalin/ 182962-8” — 2014/8/27 — 16:22

Chapter 1: Taking Java to the Next Level 13

core processor and a list of N elements, a program might deåne a solve algorithm to
break the task down for parallel execution in the following way:

if the task list contains more than N/4 elements {
leftTask = task.getLeftHalf()
rightTask = task.getRightHalf()
doInParallel {

leftResult = leftTask.solve()
rightResult = rightTask.solve()

}
result = combine(leftResult, rightResult)

} else {
result = task.solveSequentially()

}

The preceding pseudocode is a highly simpliåed description of parallel process-
ing using a list specialization of the pattern of recursive decomposition—recursively
splitting large tasks into smaller ones, to be executed in parallel, until the subtasks
are “small enough” to be executed in serial. Implementing recursive decomposition
requires knowing how to split tasks in this way, how to execute sufåciently small ones
without further splitting, and how to then combine the results of these smaller exe-
cutions. The technique for splitting depends on the source of the data; in this case,
splitting a list has an obvious implementation. Combining the results of subtasks is
often achieved by applying the pipeline terminal operation to them; for the example
of this chapter, it involves taking the maximum of two subtask results.

The Java fork/join framework uses this pattern, allocating threads from its pool to
new subtasks rather than creating new ones. Clearly, reimplementing this pattern is
far more coding work than can realistically be expected of developers every time a
collection is to be processed. This is library work—or it certainly should be!

In this case, the library class is the collection; from Java 8 onward, the collections
library classes will be able to use the fork/join framework in this way, so that client
developers can put parallelization, essentially a performance issue, to the back of their
minds and get on with solving business problems. For our current example, the only
change necessary to the client code is emphasized here:

OptionalDouble maxDistance =
intList.parallelStream()

.map(i -> new Point(i % 3, i / 3))

.mapToDouble(p -> p.distance(0, 0))

.max();

This illustrates what is meant by the slogan for the introduction of parallelism in
Java 8: explicit but unobtrusive. Parallel execution is achieved by breaking the initial
list of Integer values down recursively, as in the pseudocode for solve, until the

“Oracle_LaTeX/Mastering Lambdas/ Naftalin/ 182962-8” — 2014/8/27 — 16:22

14 Mastering Lambdas

sublists are small enough, then executing the entire pipeline serially, and ånally com-
bining the results with max. The process for deciding what is “small enough” takes
into account the number of cores available and, sometimes, characteristics of the list.
Figure 1-2 shows the decomposition of a list for processing by four cores: in this case,
“small enough” is just the list size divided by four. (A connected problem is deciding
when a list is “big enough” to make it worthwhile to incur the overhead of executing
in parallel. Chapter 6 will explore this problem in detail.)

map

max

mapmap

mapToDouble

max

map

max

fork

fork fork

mapToDouble mapToDouble mapToDouble

FIGURE 1-2. Recursive decomposition of a list processing task

Unobtrusive parallelism is an example of one of the key themes of Java 8; the API
changes that it enables give much greater freedom to library developers. One impor-
tant way in which they can use it is to explore the many opportunities for performance
improvement that are provided by modern—and future—machine architectures.

“Oracle_LaTeX/Mastering Lambdas/ Naftalin/ 182962-8” — 2014/8/27 — 16:22

Chapter 1: Taking Java to the Next Level 15

1.4 Composing Behaviors
Earlier in this chapter we saw how functionally similar lambda expressions are to
anonymous inner classes. But writing them so differently leads to different ways of
thinking about them. Lambda expressions look like functions, so it’s natural to ask
whether we can make them behave like functions. That change of perspective will
encourage us to think about working with behaviors rather than objects, and that in
turn will lead in the direction of some very different programming idioms and library
APIs.

For example, a core operation on functions is composition: combining together
two functions to make a third, whose effect is the same as applying its two components
in succession. Composition is not an idea that arises at all naturally in connection
with anonymous inner classes, but in a generalized form it corresponds very well to
the construction of traditional object-oriented programs. And just as object-oriented
programs are broken down by decomposition, the reverse of composition will work
for functions too.

Suppose, for example, that we want to sort a list of Point instances in order of their
x coordinate. The standard Java idiom for a “custom” sort4 is to create a Comparator:

Comparator<Point> byX = new Comparator<Point>(){
public int compare(Point p1, Point p2) {

return Double.compare(p1.getX(), p2.getX());
}

};

Substituting a lambda expression for the anonymous inner class declaration, as
described in the previous section, improves the readability of the code:

Comparator<Point> byX =
(p1, p2) -> Double.compare(p1.getX(), p2.getX()); Ê

But that doesn’t help with another very signiåcant problem: Comparator is mono-
lithic. If we wanted to deåne a Comparator that compared on y instead of x coordi-
nates, we would have to copy the entire declaration, substituting getY for getX every-
where. Good programming practice should lead us to look for a better solution, and a
moment’s reýection shows that Comparator is actually carrying out two functions—
extracting sort keys from its arguments and then comparing those keys. We should be
able to improve the code of Ê by building a Comparator function parameterized on
these two components. We’ll now evolve the code to do that. The intermediate stages
may seem awkward and verbose, but persist: the conclusion will be worthwhile.

4Two ways of comparing and sorting objects are standard in the Java platform: a class can have a natural
order; in this case, it implements the interface Comparable and so exposes a compareTo method that an
object can use to compare itself with another. Or a Comparator can be created for the purpose, as in this
case.

“Oracle_LaTeX/Mastering Lambdas/ Naftalin/ 182962-8” — 2014/8/27 — 16:22

16 Mastering Lambdas

To start, let’s turn the two concrete component functions that we have into lambda
form. We know the type of the functional interface for the key extractor function—
Comparator—but we also need the type of the functional interface corresponding to
the function p -> p.getX(). Looking in the package devoted to the declaration of
functional interfaces, java.util.function, we ånd the interface Function:

public interface Function<T,R> {
public R apply(T t);

}

So we can now write the lambda expressions for both key extraction and key
comparison:

Function<Point,Double> keyExtractor = p -> p.getX();
Comparator<Double> keyComparer = (d1, d2) -> Double.compare(d1, d2);

And our version of ComparatorăPointą can be reassembled from these two
smaller functions:

Comparator<Point> compareByX = (p1, p2) -> keyComparer.compare(
keyExtractor.apply(p1), keyExtractor.apply(p2)); Ë

This matches the form of Ê but represents an important improvement (one
that would be much more signiåcant in a larger example): you could plug in any
keyComparer or keyExtractor that had previously been deåned. After all, that was
the whole purpose of seeking to parameterize the larger function on its smaller com-
ponents.

But although recasting the Comparator in this way has improved its structure, we
have lost the conciseness of Ê. We can recover that in the special but very common
case where keyComparer expresses the natural ordering on the extracted keys. Then
Ë can be rewritten as:

Comparator<Point> compareByX = (p1, p2) ->
keyExtractor.apply(p1).compareTo(keyExtractor.apply(p2)); Ì

And, noticing the importance of this special case, the platform library designers added
a static method comparing to the interface Comparator; given a key extractor, it cre-
ates the corresponding Comparator5 using natural ordering on the keys. Here is its
method declaration, in which generic type parameters have been simpliåed for this
explanation:

public static <T,U extends Comparable<U>>
Comparator<T> comparing(Function<T,U> keyExtractor) {

5Other overloads of comparing can create Comparators for primitive types in the same way, but since
natural ordering can’t be used, they instead use the compare methods exposed by the wrapper classes.

“Oracle_LaTeX/Mastering Lambdas/ Naftalin/ 182962-8” — 2014/8/27 — 16:22

Chapter 1: Taking Java to the Next Level 17

return (c1, c2) ->
keyExtractor.apply(c1).compareTo(keyExtractor.apply(c2));

}

Using that method allows us to write the following (assuming a static import dec-
laration of Comparators.comparing) instead of Ì:

Comparator<Point> compareByX = comparing(p -> p.getX()); Í

Compared to Ê, Í is a big improvement: more concise and more immediately
understandable because it isolates and lays emphasis on the important element, the
key extractor, in a way that is possible only because comparing accepts a simple
behavior and uses it to build a more complex one from it.

To see the improvement in action, imagine that our problem changes slightly so
that instead of ånding the single point that is furthest from the origin, we decide to
print all the points in ascending order of their distance. It is straightforward to capture
the necessary ordering:

Comparator<Point> byDistance = comparing(p -> p.distance(0, 0));

And to implement the changed problem speciåcation, the stream pipeline needs
only a small corresponding change:

intList.stream()
.map(i -> new Point(i % 3, i / 3))
.sorted(comparing(p -> p.distance(0, 0)))
.forEach(p -> System.out.printf("(%f, %f)", p.getX(), p.getY()));

The change needed to accommodate the new problem statement illustrates some
of the advantages that lambdas will bring. Changing the Comparator was straightfor-
ward because it is being created by composition and we needed to specify only the
single component being changed. The use of the new comparator åts smoothly with
the existing stream operations, and the new code is again close to the problem state-
ment, with a clear correspondence between the changed part of the problem and the
changed part of the code.

1.5 Conclusion
It should be clear by now why the introduction of lambda expressions has been so
keenly awaited. In the earlier sections of this chapter we saw the possibilities they will
create for performance improvement, by allowing library developers to enable auto-
matic parallelization. Although this improvement will not be universally available—
one purpose of this book is to help you to understand exactly when your application
will beneåt from “going parallel”—it represents a major step in the right direction,

“Oracle_LaTeX/Mastering Lambdas/ Naftalin/ 182962-8” — 2014/8/27 — 16:22

18 Mastering Lambdas

of starting to make the improved performance of modern hardware accessible to the
application programmer.

In the last section, we saw how lambdas will encourage the writing of better APIs.
The signature of Comparator.comparing is a sign of things to come: as client pro-
grammers become comfortable with supplying behaviors like the key extraction func-
tion that comparing accepts, åne-grained library methods like comparing will be-
come the norm and, with them, corresponding improvements in the style and ease of
client coding.

	MC2379 Four Oracle Digital Chapter Sampler Covers v63
	0071842551_Chapter 1
	0071842012_Chapter 1
	0071772006_Chapter 6
	1259587517_Chapter 1
	0071829628_Chapter 1

