

CHAPTER
1

Saibot Airport Reaching
for the Future

4 Oracle SOA Suite 12c Handbook

T
his book introduces you to Oracle SOA Suite 12c. It will show in great detail how the
many features and functions of this rich set of products can be used and tied together. The
book also tells the story of Saibot Airport—an ambitious international airport with a clear

business vision about where it is going and a great need for IT solutions to enable these
ambitions. Saibot Airport and its requirements constitute the case that provides the backdrop
against which the SOA Suite is used. Various aspects of running and evolving the airport are used
to illustrate the usage of the functionality offered by the SOA Suite.

This chapter introduces Saibot Airport as an organization with a vision and a business strategy,
and one that depends heavily on IT to fulfill the strategy. The IT department itself is confronted by
changing industry trends, changing regulations, new technology, and an evolution in the way it
organizes its processes. From all of these, architecture consequences are derived. And finally,
technology products have to be selected to start the realization of the information and application
architecture designed to enable the IT and business objectives. Given the title of this book, it will
come as no surprise that this made up Saibot Airport selects many components from the Oracle
Fusion Middleware stack including the SOA Suite. The next chapter introduces this stack, the SOA
Suite, and the role the SOA Suite plays.

Saibot Airport
Saibot Airport used to be just another mid-size airport near the great city of Lexville. It has been only
a domestic hub for a long time, but for the last decade, its role in the region has become more
prominent. It is very much the desire of the management team at the airport to continue and extend
this trend and turn Saibot Airport into a major international hub, not dissimilar to what Dubai
International Airport has achieved. The board of directors and the shareholders enthusiastically
support this idea.

Like any airport, Saibot Airport offers facilities that enable airlines to provide services to
passengers and logistics companies. The infrastructure includes terminal buildings, runways,
parking space for planes, fuel depots, safety equipment, check-in desks and kiosks, various types
of vehicles for transport inside the terminal as well as on the platform, luggage processing
equipment, bird scaring machinery, and different types of flight information systems.

The airport primarily acts as a broker in services—bringing together parties offering services
and parties looking for providers of such services. Examples of such services are cleaning,
repairing, fueling and deicing the airplanes, handling luggage, providing security, catering, and
safety. In the wake of the core activities at the airport, focused on flying, there is a wide range of
other commercial activities. Saibot Airport has shops, restaurants, hotels, car rental companies,
car parks, meeting rooms, office space, and entertainment areas—that are used to provide
services to passengers and other visitors. Some of these services are offered by subsidiaries of
Saibot Airport itself—but the vast majority are delivered by concession holders: companies that
have paid for the (sometimes exclusive) right to provide certain services at the airport and rent
facilities to do so. As a result, out of the many thousands of people working at the airport, only a
minority is employed by Saibot Airport Corporation itself. Most are staff working at one of the
hundreds of business partners active on the airport.

The airport may not do any flying itself and only execute a small portion of the activities, it
does have a number of important and overarching responsibilities. These include overall safety
and cleanliness of all facilities, for example, security on the ground, the technical condition of
buildings and equipment, and up-to-date and accurate information with regard to flights and
many other aspects of the operations on the airport.

Chapter 1: Saibot Airport Reaching for the Future 5

Saibot Airport has interactions with many parties, both local and much further afield. These
include the business partners active on the airport, travelers and their friends and relatives. Many
interactions take place with local authorities and central government agencies, regarding topics
such as environment, taxes, security, and safety.

Business Vision and Strategy
As mentioned before, Saibot Airport wants to expand and become a more important player at the
national and international level. The associated increase in the number of flights to and from the
airport and the number of passengers visiting the airport will drive up revenue and profit.

The potential for the growth is there, as extensive research has shown. In order to tap into that
potential, the airport has to become more attractive for commercial airlines to use Saibot Airport
as their hub. This is to be achieved in several ways, including offering attractive rates for using the
airport facilities, ensuring a wide range of high-quality services, enabling airlines to operate very
smoothly on the airport and making the airport especially appealing to travelers.

Attractive rates and smooth operations depend on a very efficient organization and
implementations of processes and systems at the airport with a high rate of automation.

Getting very favorable traveler ratings is crucial. Traveler satisfaction depends on many
qualities—and is not easy to obtain and retain. What matters most to passengers is a quick and
painless check-in process and basic comfort in terminals. Other elements are airport accessibility,
baggage claim, terminal facilities, security check, and food and retail services. Additionally,
airport facilities have to be clean and good looking and within easy reach. Information plays a
major role in the traveler’s experience: info on how to get to the airport and how to find one’s way
around the airport, information on the flight and the check-in and boarding process, notifications
on (changes in) the status of the flight and the ability to get quick and accurate responses to
questions about airport facilities and flight details.

Any growth at Saibot Airport has to be coordinated with local and central government bodies.
Safety, security, and logistics on and around the airport are to be orchestrated across the area.
Especially, relevant for any growth scenario are environmental issues. Noise pollution, carbon
dioxide emissions, energy consumption, and waste production are among the aspects that could
constrain the growth in air traffic, unless handled carefully.

Business Objectives
To facilitate the longer term vision and goals, Saibot Airport has identified concrete business
objectives it has to pursue. These are to be achieved or at least facilitated by the IT department

Modern interaction channels have to be introduced that allow 24/7 access that enable airlines
to (re)schedule flights and to acquire services around these flights. Passengers and their relatives
should have round-the-clock access to flight information as well as data on shops, restaurants,
parking options, and travel times to and from the airport. Among these channels are to be a B2B
service, a web portal, and a mobile application.

In 2018, Saibot Airport should be paperless. All information required, for example, for
scheduling a slot, requesting a concession for a restaurant or renting a shop should be submitted
in electronic format—both the forms and the supporting documents. Having all incoming
information in digital format should reduce the workload on the inbound side of the airport’s
operation quite dramatically. The lead time from the moment the request is submitted to the
moment a staff member can actually start working on it is should be shrunk to almost nothing

6 Oracle SOA Suite 12c Handbook

thanks to the digitization. Furthermore, having multiple staff members work on the same request
at the same time will finally be standard procedure—whereas today because of the single copy
paper-based file this is only done in exceptional situations.

The learning curve for new staff should be much shorter than today. Saibot Airport’s workforce
is fairly flexible with a high turnover in several roles. A lot of money can be saved if new staff is
productive in a much shorter period of time and will make fewer mistakes (currently caused by
user interface unfriendliness). Management at the airport also requires more insight into the actual
proceedings. It wants to be aware of delays in process execution, bottlenecks, and other process
inefficiencies. Furthermore, it wants to be able to continuously improve business processes—
without long lead times, massive development effort and high risks. They have heard the phrase
“embrace change” at some agile seminar—and they like it. They desire the flexibility and short
time to market promised by the agile evangelist.

Efficiency must be the name of the game. To be able to offer attractive rate to airlines and
scale operations to the levels envisioned, the airport needs to make its operations more efficient.
Marginal operational costs per flight must be reduced by at least 20 percent. Even though it is yet
to be decided exactly where those costs are to be saved, it is obvious that downsizing the manual
labor per transaction has to be a major part of the meeting the efficiency demands. By having
business partners submitting all information in electronic format and by making all information
about the progress of such requests available on line—a large part of the current workload will be
taken away. Self-service through portals and mobile applications seems all about customer
satisfaction—yet it can also work miracles in terms of cost savings on the part of the airport.
Simpler applications with short learning curves and requiring less business understanding and
process expertise should allow Saibot Airport to work with temporary workers—creating a flexible
layer that can shrink and grow with the actual workload. This not only applies to the Saibot
Airport organization itself but also to the many companies active on the airport. That in turn
affects the airport—for example, through the frequent and usually urgent processing of security
accreditation requests for new staff.

Smooth operations are crucial—from a cost perspective as well as the travelers’ experience.
Check-in, security, and boarding procedures are all too often hindered by inaccurate or incomplete
information about the passengers or some flight details. This also applies to processing of luggage,
informing all stakeholders of changes regarding the flight and coordination of catering, fueling, and
cleaning the plane prior to departure. Ensuring the rapid electronic exchange of up-to-date and
complete data regarding the flight schedule, the passengers and crew and the services to be
provided to the air plane is crucial to be able to operate smoothly and efficient and to scale up
these operations.

IT Objectives
The CIO—guided by his team of architects and with a clear link to the overall goals set by the
board—has made sure that a number of specific IT objectives have been included in the program’s
design. She wants to ensure that the vital role IT plays for the operation of the airport is recognized
and that a clear statement is laid down with regard to IT that serves as the starting point of the
IT roadmap.

From the overhead objectives, it is already obvious that IT plays a large part in realizing the
desired move toward the future. More specific statements in the program about IT are also
included.

Chapter 1: Saibot Airport Reaching for the Future 7

An enterprise architecture design has been created and serves as the foundation for all future
projects. Modern IT architecture patterns will be adopted to translate the enterprise architecture
into IT architecture and subsequently into designs of applications and infrastructure.

The architecture and the technology selected have to allow for flexibility: changing
functionality should be possible in a simple, cheap, fast and risk free manner. Saibot Airport wants
to go agile, both in business and in IT. Furthermore, the evolution of the systems, the transitions to
new systems all have to take place while the shop stays open. The airport clearly cannot afford to
close down, especially once 24/7 online channels (web, B2B, mobile) have been introduced.

Saibot Airport’s IT should be based on current industry standards that are open and promote
interaction and reuse. It should not be on the bleeding edge of technology and only use concepts
and components that have been proven. At the same time Saibot Airport’s IT has to be up to date
in order to appeal to both staff and clients and allow the airport to find the right resources to help
design, develop, and administrate the infrastructures and systems. There is neither special
preference for nor aversion against open source software. However, Saibot Airport has found out
the hard way that it should only use software that has a large community around it and one or
more large commercial parties backing it.

It is the airport’s intention to work with a small number of strategic vendors that have a broad
product portfolio, a clear roadmap, ability and intention to keep evolving and a willingness to
cooperate and ideally take responsibility for Saibot Airport’s success with their products.
Slideware won’t do: the potential of the vendor’s products has to be demonstrated through
customer references. A technology (and vendor) selection has been made by the airport, which
included consultation with industry analysts.

The airport is opening up to the outside world. In the past, many of its interactions beyond the
perimeter of its physical site were on paper, through fax or telephone. Until not too long ago, its
main online interaction comprised of email and a read-only website based on a database in the
DMZ that was refreshed once a day from a file dump with real-time actual flight information.
Now, however, real-time synchronous interactions with the enterprise systems will have to be
supported, in the B2B exchange, for the mobile apps and for a much more interactive, real-time
web application. Security has to be at the heart of these initiatives. It is imperative for certain
information to be only made available to authorized parties—and hence it is crucial to identify
any party dealing with the airport in a secure way.

The integrity of the data will also play an even more important role; automated processes do
not have the same capacity as humans to cater for inconsistencies or simple typos in data.
Furthermore, because the data from internal systems will be published directly to portal and B2B
channels, without human checks and filters, the quality of the data has to improve beyond what
it is today.

Part of the plans is reducing IT expenditure by consolidating onto a central infrastructure with
a single source of truth for each data domain. This should also help with the quality of data—with
far less data duplication and replication. This also should have the effect of lower hardware costs,
lower software license expenses, and a downsized administration staff. In the initial stages of the
program’s execution, however, it is envisioned that IT spending will increase because of the many
projects that will have to be carried out in order to meet the objectives. Saibot Airport is looking
closely into the possibilities of making use of cloud service to achieve not only the consolidation
but also the ability to achieve “web scale” IT operations that as a mid-size organization they
would never be able to realize on their own. Leveraging cloud services would also allow the
airport to graciously handle temporary increases in demand for IT infrastructure capacity without
making structural investments.

8 Oracle SOA Suite 12c Handbook

The intended consolidation of all IT infrastructure and all data into a single instance means
on the one hand a relief for the security officer as it means fewer sites, administrators, and
environments to worry about. However, this consolidation means that availability, which in the
24/7 world of Saibot Airport is essential, becomes a much harder challenge. The consolidated
systems, logically a single instance, are the critical factor in virtually all of the activities. It is a
single point of failure—at least logically. Part of the IT roadmap is taking measures to safeguard
the availability of all IT components—for example, through clustering and fail-over.

Architecture to Enable the Future
The architecture team at the airport leads the way in terms of technology evolution. This team has
drawn up the high level IT architecture, selected and fine-tuned the architecture patterns that are
to be applied and worked with developers to design the reference architecture. This reference
architecture provides guidelines on how to make use of architectural patterns when designing
system components and how to make use of the selected technology to implement these patterns.
It also provides a common vocabulary with which to discuss implementations. A crucial
architecture product is the roadmap that defines how Saibot Airport can go through the transition
from the current to the to-be situation.

Partly based on these architecture designs, the strategic technology and vendor selection is
made; it is after all imperative that the vendor and his product portfolio is capable of implementing
the architecture as designed by the team.

The legacy at Saibot Airport involved a classic case of application silos: stand-alone units that
consist of a database, business logic, and a user interface. Each application is implemented
through its own silo—using distinct and sometimes very proprietary technologies and maintained
by fairly inward facing, somewhat self-absorbed teams. Flexibly sharing resources between these
teams is neither common nor easy. Technical integration between the silos for exchanging and
ideally truly sharing data is hard to achieve too; frequently files are used to export and import
data in an asynchronous batch process that may involve manual actions as well. Data replication
is common as is the human task of typing to reenter data: even though data may already exist in
one silo that does not mean it is accessible to another. Because data exchange is not readily
available, manually keying in that same information is frequently the easy way out.

Breaking up the silos is an absolute requirement in the new architecture. Lasagna style is on
the menu: a layered architecture with clear responsibilities assigned to each layer and well-defined
interfaces describing the interactions between these layers. Figure 1-1 illustrates this transition.

No single team or application is owner of what essentially is and always should have been
treated as enterprise data that can be used in many different processes. Teams and projects are not
masters of their own destiny: decisions they make regarding technology, application layout, and
implementation patterns are part of the enterprise landscape and have to fit in.
The layers identified in this architecture:

 ■ User interface and programmatic interface layer—the interaction with the outside world
through human-oriented as well as system-oriented interfaces

 ■ Business layer—common interface to data and business logic reusable across user and
programmatic interfaces

 ■ Data layer—the persistency and integrity of all enterprise information assets including
documents and other unstructured data

Chapter 1: Saibot Airport Reaching for the Future 9

Identifying these layers will help to establish a clear separation of concerns. Each layer has its
own role using its own design patterns and designated technology. The implementation of each
layer is encapsulated to other layers. Layers can only invoke the next lower layer. Layers are
unaware of any other layers except for the one directly underneath them. Communication is
always started at the top, flowing downward.

Each layer should have clear interfaces defined that describe the interaction that it supports.
Part of this interface description is the definition of the operations that can be invoked in the layer,
the input they require and the output they return—including exceptions that can be thrown—as
well as a description of side effects of the call, such as emails being sent, products being shipped,
or data being persisted. Nonfunctional aspects of operations should also be described; these
include availability (opening hours), costs, authorization and other security aspects, response
time, and accepted volumes.

One of the key decisions made in the early stages of the architecture design was the adoption
of many service-oriented architecture (SOA) principles. These principles include decoupling (well,
loose coupling at the very least), abstraction and encapsulation, reusability, and location
virtualization. Applying these principles will help to implement the layered architecture and will
play a large part in the flexibility, short time to market, efficiency through reuse, and risk
reduction that the business requires.

The Triangle
An increasingly important role in discussion about Saibot Airport’s IT future was played by a very
simple illustration. Basically nothing but a triangle, with its base at the top; see Figure 1-2.

This triangle visualizes the distinction between the layers in terms of their reuse potential and
generic nature versus their multichannel support and level of customization.

The data layer is characterized by centralization and (logical) consolidation. Data assets have
a single source of truth. This layer has a very high reuse potential and generic, enterprise-wide
structure. As a core enterprise resource, requirements in quality, integrity, availability, and
confidentiality are very high. The rate of change at this level is fairly low—at least at the meta-
level. Data is not removed very frequently and the data structures evolve even slower. Note that
big data and fast data are a special kind of data—raw data that serves very operational goals or
undergoes substantial processing before ending up in this enterprise data layer.

The top layer that exposes interfaces to users and applications is quite different. It sports a large
variety, catering to very specific channels, consumers, and user roles—allowing customization and

FIGURE 1-1. Transition from application silos to a layered architecture

10 Oracle SOA Suite 12c Handbook

personalization to meet special requirements. The average life time of components in this layer is
fairly short, especially compared to the data layer, and the rate of change is much higher.

The business layer, the man in the middle, is also in the middle in terms of reusability and rate
of change. It offers services that are aimed at reuse by various different interface components. This
layer brings together various assets from the data layer, implements business logic, validates,
processes and enriches data, and runs processes. The rate of change is higher than at the data layer
as is the functional variety. Compared to the user and application interface layer, however, this layer
evolves much slower, is much more focused at reuse and caters for far fewer specific, one-off needs.

Most business requirements are expected to find the majority of the required effort in the top
layer, a sizable portion still in the middle layer and very little effort in the bottom layer. The
triangle therefore also represents the work ratio in many development projects and therefore
suggests a team composition.

The transition IT at Saibot Airport is undergoing is now characterized at a very abstract level
by Figure 1-3.

FIGURE 1-2. The characteristics of the three main layers in the layered architecture

• Modern
• Volatile
• Customized
• Variety
• Visible

• Reuse
• Consolidation
• Slowly
 evolving
• Long Lasting

Interface

Business

Data

FIGURE 1-3. From application silos to the layered architecture with varying degrees of
consolidation and change

Chapter 1: Saibot Airport Reaching for the Future 11

Domains of Data
The enterprise architecture has identified domains within Saibot Airport—relatively independent
areas. Data in each domain and services exposing that data are to be controlled by domain
experts. There are no direct relationships between components in different domains. The thinking
should be that at any time a domain could be reimplemented using a commercial off-the-shelf
offering such as a SaaS CRM system or a third party expertise application.

Some of the domains identified by the architects are: common (reference data), relations,
flight slots and schedules, security, concessions, documents, and finance.

Most interactions within and across domains will involve data. A common understanding of and
language for interacting in terms of the data is essential. The architects have launched an initiative to
create an Enterprise Data Model (EDM). This model describes all business objects that are meaningful
to Saibot Airport’s operations, including their properties and relationships. Common terminology as
well as lists of reference values that are to be used to set the value of certain properties are defined in
a standardized way and made available throughout the organization. Note: The model is defined at
the business layer and it may not necessarily be fully aligned with the database structures and other
technical assets inside each of the domains. The EDM is the common business language across all of
Saibot Airport—stretching beyond IT. All interactions between the business layer and the data layer
will be in terms of the EDM. Note that operations inside the data layer will probably use existing
idiom and structures for quite some time to come—which is unavoidable and perfectly acceptable.

Service-Oriented Architecture
The decision to make service-oriented architecture the leading architecture principle has a
number of consequences. Middleware is still fairly new at the airport. Teams used to be organized
around applications—around the silos that were discussed earlier on. The business layer at the
heart of the layered architecture will be the new focal point for all teams. This layer is made up of
a number of different types of services. These services bring together all data from the data layer—
structured and unstructured, across databases, document repositories, LDAP instances and mail
servers—and expose access to the data in a standardized, unified way. Moreover, these services
make business logic available to applications—both user interfaces and programmatic channels.

Part of the foundation of the business layer is the Enterprise Data Model (aka Canonical Data
Model) and more specifically: an XML representation of that model, expressed in terms of a
heavily annotated XSD (XML Schema Definition). All data structures handled by the services, both
input and output, are defined in correspondence with business objects in this canonical XSD. The
data domains are recognizable through the namespace structure used in these XSD definitions.

The architecture team came up with a service classification scheme that helps organize the
services as well as the teams working on those services. Following this scheme, the business layer
is subdivided in these types of services (as illustrated in Figure 1-4).

 ■ Elementary services that provide atomic functionality within a domain; their reuse
potential is high, their added value usually is low

 ■ Composite services that combine two or more elementary services into business
functions with higher added value; composite services come in two flavors:

 ■ Within a domain

 ■ Across domains—typically introducing the need for either global transactions or
transaction compensation; even such cross-domain services should have a single
owner—perhaps a designated domain

12 Oracle SOA Suite 12c Handbook

 ■ Process services that are often asynchronous and longer running (up to minutes, hours, or
even days) and that will usually contain state while running

 ■ Presentation services that are usually not meant for general reuse; instead they cater for
specific needs of an application—either a user interface or a programmatic interface,
speaking the language of that application as closely as possible

 ■ Utility services—generic, domain independent, highly reusable services, frequently of
an almost infrastructural nature; for example, logging, sending emails, value translation,
and geocoding

Service design and implementation guidelines are created per service category. Governance,
ownership, testing and many other aspects of the services also depend on the type of service.
Saibot Airport ended up closely aligning its team structure with these categories of services—
as we will see in a later section.

NOTE
Except for presentation services, the service interfaces are expressed in
terms of the canonical data model. They are all recorded in a central
service catalog where potential consumers will find information about
the service including functionality, contract, nonfunctional aspects and
status. At Saibot Airport, this service catalog started life as a simple
Wiki that references the live WSDL (Web Service Definition Language)
and XSD specifications of services.

FIGURE 1-4. Domains and service types at Saibot Airport

Interface

Business

Data

Presentation
service

Composite
service

Decision
Svc

Elementary
service

Elementary
service

Elementary
service

Elementary
service

CRM Expertise Docs Finance

Elementary
service

P&A

Presentation
service

Composite
service

Utility
service

Business
process

Chapter 1: Saibot Airport Reaching for the Future 13

Event-Driven Architecture
For the architecture layers it was stated that a layer cannot invoke a higher layer—or even be
aware of it. The same applies to the service categories: a service is unaware—and therefore
completely independent—of higher level services. It cannot directly initiate communications with
higher level services. This means, for example, that an elementary service cannot invoke a
composite service or process service; for all intents and purposes, it may not even know such
higher level services exist.

This does not mean however that a lower level layer or service will never have something to
tell that could be of interest to a higher level service. It means there has to be another way of
communicating that information then telling it in a direct call. To address this challenge, the
architects have adopted elements from Event-Driven Architecture (EDA). Events are used as the
very decoupled vehicle to convey information without direct any dependencies between the
source and the recipient(s) of the information.

In addition to defining the canonical data model and identifying the services, Saibot Airport’s
information analysts are working on discovering business events. A business event is a condition
or situation that may come about somewhere in the airport’s daily operations that is potentially of
interest to other parties. Events of interest to a component within the Saibot Airport landscape can
of course also take place in the outside world; these too classify as business event.

A business event is described by a name or type, a timestamp and a payload—data that
clarifies what the event entails. Some examples of business events at the airport are: weather alert,
(outbound) flight has been cancelled, airline has filed for bankruptcy, deadline has expired in
some business process, business rule has been changed.

The reference architecture describes an event handling infrastructure—a generic facility that is
available to all application components and services alike—as shown in Figure 1-5. Anyone can

FIGURE 1-5. The Central Event Facility handles events in an extremely decoupled approach

Interface

Business

Data

Presentation
service

Composite
service

Decision
Svc

Elementary
service

Elementary
service

Elementary
service

Elementary
service

Central Event Facility

CRM Expertise Docs Finance

Elementary
service

P&A

Presentation
service

Composite
service

Utility
service

Business
process

14 Oracle SOA Suite 12c Handbook

publish a business event to this event handler—provided the event type is predefined and the
payload has the predefined structure. After publishing the event, the publisher is not involved in
any way with the delivery of the event and does not even know if the event is consumed by any
party at all. Any component at any layer in the architecture can subscribe to selected types of
business events. The event handler will push any published event to all subscribers to the type of
this published event. Consumers of the event will receive the event with its payload and can do
with it as they see fit. They are not aware of the component that published the event.

The perfect decoupling achieved through the events makes it extremely simple to add
consumers of a particular type of event or to introduce new publishers of some event type.
Removing subscribers to an event is another zero impact procedure, as is losing one or more
publishers of events.

Through events, elementary services and even components in the data layer can tell their
story that may be of great interest to composite or process services or even to user interface
components—without ever knowing about them. The interaction can take place, but in an
entirely decoupled fashion.

On Technology and Vendor Selection
The business objectives and the derived layered architecture as well as the more detailed
architecture principles result in a clear image of the technology components required by Saibot
Airport. Figure 1-6 shows the most important components that need to be implemented through
technology products that will have to be selected and acquired from one or more vendors.

BPM/ACM &
Workflow

Bulk Data
Integration Service Bus

Business Monitoring
Id

en
tit

y
M

an
ag

em
en

t &
 S

ec
ur

ity
Ad

m
in

is
tr

at
io

n,
 M

on
ito

rin
g,

 C
on

fig
ur

at
io

n

Event Handler

Business Rule

Service
Orchestration

Technology
Adapters

Content &
Document

Management

User Interface
Application Interface

Process
orchestration

Integration

Data

Portal

B2B Travelers, Companies,
Government Agencies Internal Staff

Web
Applications

Web Sites &
Content

Internal UI
Applications

Mobile
External

Services
Web

DWH LDAP CRM P&A FinanceKnow-
ledgeEmail Content

Repository

FIGURE 1-6. An overview of the key technology components that Saibot Airport needs to select
and acquire

Chapter 1: Saibot Airport Reaching for the Future 15

Saibot Airport has stated from the outset that it does not want to buy into a single integrated
suite of products only because it is a single integrated suite. It wants the best of breed: the best
product available in each category. It requires all products to be open, standards based and
easily integratable.

A number of additional criteria were determined, based upon which products would
be evaluated.

The airport does not have IT as its core activity. It wants to use proven and supported
technology and products, backed by verifiable references. It needs a product to have a clear
strategy as well as a strong community and an abundance of resources. The latter refers both to
qualified IT professionals and to books, internet forums and blogs, training material, etc. The
learning curve for a product should be clear and justifiable—judged against the existing
workforce.

Any product should have strategic importance to its vendor. Besides, the vendor (or open
source project) should be stable and future proof. Analyst reviews are retrieved and taken into
consideration.

Saibot Airport does not want to have a large variety of technologies and platforms that require
different skills. Even though it is a substantial organization, resources are limited. It wants to focus
on a small number of major industry platforms—hardware, O/S, virtualization, database and
middleware—as to prevent a nightmare for the administrators. All products selected should
provide sufficient options for monitoring and configuration and they should allow for automated
build and deployment.

Of course the cost of the software is an important part of the decision. Here, the selection
process will look at a number of aspects. What is the license fee per pricing unit—user, CPU
core—and what is the estimated number of pricing units. What is the yearly support fee and what
are pricing elements play a role? What discounts can be negotiated? How long are the licenses
valid for? What alternative constructions are available—such as a subscription fee? Furthermore,
what assurances about the software behavior is the prepared to make? What SLAs will it enter? Is
the vendor prepared to take some form of responsibility for the successful implementation of the
software—possibly a no cure no pay construction or a fee that is partly based on the return on the
investment. What are the options for using the software from the cloud to complement an on
premises investment with a pay-per-use, scalable capacity?

Selection Approach
Saibot Airport had to make two selections that cannot be separated. It had to select one or more
vendors and it needs to select the products that will implement the functions identified in the
architecture.

It published a Request for Information in which it invited any vendor to answer questions for
each of the components identified in the target architecture. This RFI focused on checklist on
features, technical characteristics, implementation requirements, training, and order of magnitude
pricing. Responses were received from vendors of niche products, specialists in very specific
areas as well as reactions from vendors of suites of products that covered wide ranges of products.
It also invited a number of parties to represent open source products.

In parallel with the RFI process, the airport gathered information from peer organizations—
largely governmental—about product and vendor experiences. Saibot Airport also consulted
market analysts—both online and in person.

The information received in this first round from the RFI and the parallel explorations was
screened and evaluated, based on the criteria listed overhead. This resulted in a short list of both

16 Oracle SOA Suite 12c Handbook

products and vendors. The vendors on this short list were invited for the next stage: request
for proposal.

In this stage, vendors were asked to present a plan for how their product(s) could best be
used by the airport—including the infrastructure topology, the licenses, the migration of systems
and transition of processes and staff. The proposal needed to cover the overall price as well as
any alternative compensation proposals such as deferred payment, result-based payment,
subscription-based fee, and usage-based fee.

Each vendor had to present relevant customer reference cases that could be contacted and
visited. It also had to lay down the product roadmap and longer term vision and strategy. Saibot
Airport wanted to be convinced that the products presented were indeed future proof.

By this time, the airport had decided to take a slightly different approach. It defined several
technology clusters that it wanted to select in somewhat separate stages. Roughly like this:

 ■ Hardware—no immediate investment; virtualization using VM Ware was the short-
term way forward; investigations are started into a multisite, disaster proof, very high
availability data center setup.

 ■ Database—consolidation on Oracle Database 12c—using the multitenancy option for
consolidation (which means upgrading some databases and replacing some MySQL and
SQL Server databases).

 ■ Mobile—no strategic selection is made for now; given the volatility in the mobile market
and the fact that mobile applications are on the very outside of the enterprise with little
impact and a short lifespan, it was deemed unnecessary to make a strategic selection
for mobile technology; being able to support mobile applications by exposing relevant
(REST) services was deemed much more important.

 ■ Internal user interface applications—for quite some time to come, some Oracle Forms
applications will be used and maintained; one application has been migrated to (or
rather rebuilt in) Oracle ADF 11g. The airport has evaluated its experiences with ADF and
decided that for now it has no reason to select a different technology—only switch to the
latest version of the framework (12c). It did of course verify the strategic importance of
ADF for Oracle, the strength of the community, the roadmap and vision and the pricing,
and found them satisfactory. The availability of external resources is somewhat worrying,
although the realization that ADF is a Java EE framework that any Java Web Developer
can quickly embrace by and large took care of that worry.

For the following clusters, a separate Request for Proposal is conducted:

 ■ Service Oriented Middleware—Saibot Airport needs products to implement an enterprise
service bus, service orchestration, Event-Driven Architecture, technology adapters; these
products have to work together well and ideally use the same platform.

 ■ Process and human workflow management—in this cluster, Saibot Airport identified the
need for decision rules (aka business rules), business process orchestration, human tasks
and workflow management, and business activity monitoring (BAM); these products have
to be able to closely work together.

 ■ Enterprise content management—one of the business objectives is the complete eradication
of paper; working with digital documents is crucial for the organization. It requires

Chapter 1: Saibot Airport Reaching for the Future 17

products to store, search and publish, convert, tag and track, archive and protect digital
documents in various formats. These products should of course fit in the service-oriented
architecture that will be established.

 ■ Portals and external user interface applications—because of the decoupling achieved in
the layered architecture and the use of services, the dependencies between portals and
other external interfaces on the one hand and the products in the business layer on the
other are minimal; that means that a decision on the products used for these portals can
be made independently of the other product selections.

 ■ Identity and access management—Saibot Airport is opening up its enterprise applications
to users outside the organization; this new situations calls for a new approach to
management of identities, the implementation of authentication and the authorization
based on the identity; the airport currently uses Active Directory for its internal staff
and is not keen on abandoning that platform (as it is integrated into the overall office
automation). It wants to introduce products that will handle identities and authorization
for external users. It also requires products that handle encryption, digital signatures, and
other security techniques that are to be applied to certain services.

Selections
Most of the products in the clusters Service-Oriented Middleware and Process and Human
Workflow Management that made it onto the short list were based on the Java EE platform. Added
to this, the fact that the technology for the internal applications was set as ADF 12c, another Java
EE–based technology, and good old Oracle Forms—also running on the Java EE platform, Saibot
Airport decided to choose Java EE as the platform for all its middleware. It also selected Oracle
WebLogic 12c as the Java EE application server of choice. Only when a best of breed product
would be selected with superior functionality that would be unable to run on WebLogic could
another application server be considered. Note that the team at Saibot Airport very specifically
kept open the possibility to support a different platform in the User and Application Interface
layer. Some internal politics may have been part of that decision; there was some resistance
against going Java all the way from some of the .Net-oriented teams.

The product selection for enterprise service bus and service orchestration (the latter quickly
translated to BPEL) evaluated among other Microsoft BizTalk and various Tibco products as well
as some open source offerings and then decided on Oracle SOA Suite including the Service Bus.
This combination also brought in the required technology adapters and support for event
handling—through the SOA Suite Event Delivery Network, as well as support for JMS and AQ
(Advanced Queuing).

The support in SOA Suite for Decision (Business) Rules and Human Workflow as well as the
strong integration with Oracle BPM Suite at both design time and run time weighed strongly in
favor of the latter when the product selection was made for process orchestration and human
workflow. The SOA Suite license includes most of the required functionality with rich (enough)
functionality and a track record of many years. The BPM Suite adds support for true BPMN
process modeling and execution and comes with a range of run time tools that help design, track
and monitor, manage and collaborate on process instances. Saibot Airport ended up selecting
BPM Suite because of its best of breed quality with the huge added bonus of perfect integration
with SOA Suite.

18 Oracle SOA Suite 12c Handbook

NOTE
An on-site visit at St. Matthew’s Hospital where SOA Suite 11g
had been in use since early 2010 proved extremely helpful. The
experiences at the hospital with almost all aspects of implementing
the layered architecture using Oracle Fusion Middleware and in
particular SOA Suite 11g were very valuable to the Saibot Airport staff.
They were after all about to embark on a very similar journey that the
hospital already had been on for the previous five years.

The product selection for content management did not go very smooth at all. This area is quite
new at the airport and there is not a lot of grasp of the subject matter. An external consultant was
hired—and quickly let go off again when he turned out to be quite biased (without making that
clear up front). Then the definitions of what constitutes content—and what does not—in this
selection process were contested. Some people had a vision of the static content of websites
whereas others were thinking about all documents—or even all unstructured data—passing
through the organization. Even the naming of the Oracle product—WebCenter Content—made
some eyebrows go up; it sounded like that static website content thing that they had been able to
get off the table after much debate. Only the reassurance that WebCenter Content was in fact the
Universal Content Manager restored peace and quiet. In the end, it was decided to give
WebCenter Content a go—not because it was such a clear winner but because of the integration
in the Oracle Fusion Middleware Platform and the perceived lower risk and smaller effort
resulting from that integration.

This next illustration, Figure 1-7, shows the products that were selected. The choice of the
portal technology is yet to be made; for the time being, existing .Net and Sharepoint teams

FIGURE 1-7. Mapping the required components to actual products

BPM/ACM & Workflow:
SOA Suite & BPM Suite

Bulk Data
Integration:

ODI

Service Bus:
SOA Suite–
Service Bus

Business Monitoring:
Oracle BAM

Id
en

tit
y

an
d

Ac
ce

ss
 M

an
ag

em
en

t S
ui

te
s

O
ra

cl
e

En
te

rp
ris

e
M

an
ag

er
 C

lo
ud

 C
on

tr
ol

Event Handler:
SOA Suite EDN

Business Rule:
BR in SOA Suite

Service Orchestration:
SOA Suite (BPEL)

Technology
Adapters:
SOA Suite

Content & Document
Management:

WebCenter Content

User Interface
Application Interface

Process
Orchestration

Integration

Data

Portal
Web Apps

ASP.NET
Web Sites

MS Sharepoint

Internal UI
Applications:
ADF & Forms

Mobile: several,
Including Oracle MAF

SOA Suite
B2B

DWH LDAP CRM P&A FinanceKnow-
ledge

Email Content
Repository

SOA Suite
MT

Chapter 1: Saibot Airport Reaching for the Future 19

continue development work with their proven technology—connecting to the services offered
from the business layer.

The decision on Identity Management and Security is proving difficult. Part of the complexity
is the licensing conditions regarding all potential users of Saibot Airport’s systems: anyone
traveling through the airport is after all a potential user. The airport is negotiating with various
vendors of IdM products on how to handle that particular situation in license terms. No final
selection has been made. Fortunately, the Oracle Platform Security Services in the WebLogic
Platform insulate applications running on the platform—such as ADF applications, SOA Suite
Composite applications and Service Bus services—from the actual IdM technology. Any
development work being done right now will not be impacted by a later decision on the specific
products for identity management and authentication.

After the selections and the associated contracts have been approved by the board of
directors, things moved forward and once the infrastructure was prepared, the software was
actually installed and staff members educated. The business objectives that had lived on paper for
several years now and the architecture design that decorated many a whiteboard were on the
verge of getting real.

Processes and Organization
Saibot Airport has traveled part of the road mapped in their business plan. The first few of many
projects for transitions of existing systems or the introduction of new business functionality
through IT have been executed or are in progress. New technology has been introduced as well
as a fundamentally changed way of approaching software development. While the road is bumpy,
successes are far more abundant than failures. Reluctance was pretty widespread when the first
steps with service orientation and layered architecture were taken and now the mood has
changed. Many IT staff members are getting convinced of the approach in general and their
ability to play a part in it. Enthusiasm is growing with self-confidence.

The way the airport is now perceived by its own staff, its many business partners, the travelers,
liaisons in government bodies, etc. has improved substantially over the past few years. The
modernization of applications appeals to all involved and an increase of the quality of service
and information has been reported across the board. Shorter waiting times, fewer mistakes, and a
better experience are among the results found in a recent survey. An internal evaluation under
employees yielded similar outcomes with a higher satisfaction and a much higher score at the
standard survey question “do you intend to work at Saibot Airport one year from now.”

Among the very first steps in the program has been the consolidation of data into a single
database and the centralization of all infrastructure in a single data center (which has two physical
sites). All administration activities have been centralized as well. This has turned out to be much
more efficient and also allows administrators to specialize. Instead of having to manage small
pieces of everything—from network and storage all the way up to operating system and
database—they now have responsibility for a much larger piece of one special area. External help
is needed much less frequently because of this specialization. That in turn means costs are down
and mean times to resolution are shorter.

The data consolidation is proceeding in several steps. First the data was stored in a single
database—with the data still scattered across application schemas. Gradually, data becomes truly
shared, reducing the duplication and resulting inconsistencies. This is not just a technical process—
it also requires putting some pressure on the business representatives who are somewhat wary
of sharing their data.

20 Oracle SOA Suite 12c Handbook

The transition from Oracle Classic [Forms, Data (CRUD-style) and Database oriented, SQL
and PL/SQL, Discoverer, Designer] and waterfall approach to the new world of agile and service
oriented along with Java and web user interfaces, Mobile, and BPM is scary and overwhelming.
Guidance, reassurance, explanations, and almost spiritual support are absolutely necessary to
motivate and enable staff in almost every role. For a long period, constant attention is required to
engage people who are suspicious and frightened about what is happening. Communication is
essential for the success of the kind of rapid evolution the airport is going through.

All roles, from business owner to administrator, need to be involved with the initial transition
and with every new initiative involving software development. Support and involvement from
C-level is crucial.

Embrace change is the adage of the agile approach to software development that Saibot
Airport has adopted. That has been and still is a challenge for many of the parties involved. Even
though it is acknowledged rationally that change is part of the game, changes in direction and
planning are still frequently experienced as very disruptive. Involving the members of the Scrum-
team early on whenever such changes occur is important in order to preserve their engagement
and motivation.

The Scrum methodology has rapidly taken hold. The initial skepticism was quickly overcome
for most and some of the early skeptics are now true Scrum believers—sometimes even bordering
on the fanatical side. The commitment of team-members to the team and of the teams to the
business objectives has increased dramatically. The constant focus on near rather than distant
deadlines and rapid feedback from the business representative turns out to be very motivating for
the teams and the quick feedback from the teams to the business also helps the business to adjust
requirements. IT staff are usually pretty smart if somewhat overly focused people and their input is
used to improve the plans and designs.

The responsibility the business needs to take on in order to gain agility and continuous
delivery is substantial. In order for the Scrum approach to work well, the product owner needs to
be available very frequently, needs to be thoroughly engaged and be able and authorized to make
decisions on priorities and functional design choices. This role can make or break the software
development endeavor.

The new way of working—both in terms of architecture and technology and also in terms of
software development methodology and process—impacts all roles involved. Some roles,
however, were far more changed in the transition. There is the role of the business owner—who
has become far more actively involved throughout the project. Other roles undergoing substantial
change are tester and administrator. Both are far earlier engaged in development initiatives and
closer collaborating with or even embedded within the Scrum teams. New technologies and a
broader scope of responsibilities make these roles more interesting as well as challenging.

One aspect of the Scrum way of working that Saibot Airport is still somewhat struggling with
is the tension that frequently arises between the short-term focus of the sprints and the longer
term architecture objectives. Technical debt is a term coined to describe the corners cut during
sprints when functionality wins over coding standards and architectural guidelines. Technical debt
should be settled before too long—and all parties agree on that principle—however, it proves a
constant struggle to actually claim part of the team’s capacity away from functional business value
to longer term software quality and maintainability.

The database and SQL and PL/SQL continue to be incredibly important to the overall success
of the application architecture. Performance, scalability, integrity can benefit from good or suffer
from poor usage of the database capabilities.

Chapter 1: Saibot Airport Reaching for the Future 21

It has proven extremely helpful to bring in real-world experience with as many aspects as
possible of the transition and the target architecture and way of working; this helped prevent costly
(and time-consuming) mistakes that would also cause frustration and undermine confidence in
what is already a fragile environment. Experience helps to select and apply proven best practices.
Experienced outsiders also allowed knowledge transfer in a hands-on situation—instead of just a
classroom—and gives the trainer the opportunity to prove his salt.

Outsiders were brought in to initially show how things should be done, then later on to
collaborate with the internal staff on equal footing and finally to act as part time coaches and
quality assurers when the internal staff took over for real. The long-term objective is to build up
the capabilities of the internal staff and in the short-term experiences outsiders can help boost
productivity.

Service-Oriented Architecture
Even though the service orientation yields substantial returns in the long run—through reuse and
agile development on top of existing services—there will be initial investments to put the
architecture and the infrastructure in place. Some of the cost precedes the gain. Embracing the
layered architecture and doing this SOA-thing has to be strategic decision and requires some
steadfastness. Ideally of course, there is some low hanging fruit or an urgent business requirement
that can lead to a first project that can be the carrier for the launch of the SOA implementation
and have a quick and visible business value.

Encapsulation is a powerful notion. The implementation of a service is not relevant to its
consumers. The contracts, both the functional interface and the nonfunctional usage aspects, are
what consumers rely on. This means among other things that legacy applications can very well be
embedded in the new architecture. As long as they can be wrapped inside standards-compliant
interfaces that are mediated from to adapters on top of those legacy applications, they fit in quite
well in the new world. Encapsulation makes it possible to then replace the legacy implementation
of the service, along with its adapter, with a custom implementation using the technology of
choice or perhaps with a COTS product.

The decoupled architecture approach also allows for specialized teams—working on isolated,
clearly identified areas within the system landscape; that also means that not every developer
needs to acquire skills for all tools and technologies involved (at once).

The layered architecture and the decoupled software design make it possible to outsource
chunks of works to external partners. For example, once all service interfaces have been agreed
upon, a nearby or even a far-away company can build a website or mobile application on top of
these interfaces. Rapid development and flexible software engineering capacity—especially when
a cloud-based development environment is used—are at the fingertips of the IT manager.

Governance is a critical element, especially in the mid to longer range. Governance is the
approach for managing services and related assets (such as the canonical model) through their life
cycle. It also includes identifying new services and changes to existing ones, cataloguing services
in a way that makes them findable and ultimately reusable, and performing QA on design and
implementation to ensure consistency and adherence to the standards specified as part of the
governance initiative.

Tools
The short release cycles and frequent, near continuous, delivery can only be realized with automated
build and deployment procedures that ideally include testing as well. These procedures for building
and rolling out software deliverables should be coordinated and monitored.

22 Oracle SOA Suite 12c Handbook

Something similar applies to the environments in which the artifacts are deployed—the
combination of platform and frameworks that make up the infrastructure in which the developed
software runs. The environment consists both of standard software from third party vendors and
the specific configuration this software as it applies to Saibot Airport. Controlling the creation, roll
out of and updates to these environments is another process that requires automated execution
and control in order to achieve an agile and managed delivery process.

The airport has selected a wide assortment of tools, most of them from open source projects,
to aid with software engineering. Among these are tools that help with a variety of tasks, most in
the area of DevOps. Bringing together the worlds of preparation (or development) and operations
(aka ops) is tagged with the popular term DevOps. It is closely associated with an agile way of
working that strives for quick time to market for updates in software, platform, and infrastructure.
This can only be achieved by smooth communication, close collaboration, and a high degree of
automation with regard to build, test, and deploy.

For orchestrating and monitoring the overall build process, Hudson was selected—and stuck
to when the Jenkins fork occurred. The build actions themselves are largely done using Maven. In
conjunction with Maven, the tool Artifactory is used as a repository for code artifacts. For controlled
deployment, a tool called DeployIt has been acquired (this product is not open source). Rolling out
environments has been tackled with Puppet.

For various types of testing activities, the following tools were selected:

 ■ Web services: SoapUI (functional), JMeter, and LoadUI (load and stress)

 ■ Java and ADF Business Components: jUnit (function and load)

 ■ Web applications: JMeter (functional and primarily load); Selenium (functional); Oracle
Application Testing Suite (under evaluation for both functional and load testing)

In addition, some of the built in testing features of the SOA Suite are used as well. Some
attempts have been made to create unit tests for web components and composite services through
the use of mock objects. EasyMock (for Java) and SoapUI with Jetty (for mock web services) were
used for this.

Management of tickets—issues, requirements, enhancement requests—is done using
Jira. This tool is also used for coordinating the Backlog (Product and Team Sprint) and the
Scrum board.

Source code control is done using Subversion—although some investigation has been
done into Git. No final decision has been made yet as to whether a migration to Git should
be initiated.

With regard to the quality control of the code, a number of tools are applied—by and large
only for Java code and not yet taking Service Bus, SOA Suite and BPM artifacts into account.
Some of the frameworks used in this area are Sonar (for integrating the findings from various other
QA tools), Checkstyle (for verifying adherence to coding conventions), PMD (spotting bad
practices), and FindBugs (for finding potential bugs).

MediaWiki has been set up to allow teams and guilds (see below) to collaborate and share. The
Wiki is used for checklists, how-to documents, configuration instructions, the catalog of services,
records of design considerations, and motivated decisions. Also on the Wiki are architecture
guidelines, coding conventions, descriptions of DTAP environments along with all URLs for the
consoles and composers and associated tools for Service Bus, SOA Suite, WebCenter Content, and
WebLogic Server.

Chapter 1: Saibot Airport Reaching for the Future 23

Organization and Roles
The distinction between projects doing initial development and maintenance teams doing
corrective and adaptive management is removed. With very short release cycles, the need for
dedicated teams with special focus on maintenance working against a higher frequency release
cycle than the projects teams largely disappeared. It seemed a waste to spread expertise in
technology and application thin across development and maintenance. And it is considered a
good idea that developers and teams take responsibility for evolving, which includes correcting,
their own deliverables.

At the same time, the notion of project teams was dropped. Development teams would be
created that focus on certain areas of functionality through development skills on a subset of all
technology in use at the airport. These teams could be enlisted for user stories (features) defined
by several business projects. They also were mandated to spend between 20 and 30 percent of
their time on corrective and adaptive maintenance. Up to 10 percent of the time was free to use
on “small effort, big gain” activities: business requests that are not really part of a formal user
story or project back log but that can add substantial business value with very little risk and
effort. Given the short release cycles, this flexibility easily provides happy faces among end
users and developers.

The testers used to have their stage in the waterfall approach where—after plenty of preparations,
based on detailed design documents—they would torture the software artifacts in order to verify
its fitness. Testing was typically done in isolation—the only contact with the development team
consisting of the issue tracking system. Testing focused almost exclusively on the user interface—
by and large ignoring the internal components.

“Testing 2.0” in a Scrum way of working is very different. Testers are embedded in the Scrum
teams. Testing is done as part of every sprint. Design documents are high level if at all available.
Testing needs to be geared toward user expectations and interface designs. Testing involves a large
chunk of nonuser interface services—such as web services and including database APIs. The use
of tooling for automated (regression) testing is rapidly increasing. Communication and
collaboration between testers and other team members such as analysts and developers grows
from next to nothing to pretty intense. It is not uncommon for testers to engage in other activities
in the early stages of a sprint—and for analysts and developers to pick up testing tasks near the
end of a sprint. Feedback on software quality is much faster than in the old way of working. At the
same time, testing may not be as rigorous as it used to be, although the gradual buildup of
automatic test sets eventually brings testing to a fairly high level.

Similarly drastic are the changes for the administrators. For many years, administrators either
did hardware and systems administration or database administration. By and large, activities were
performed decoupled from development projects and only geared toward production systems. In
a few years, a new world descended on the administrators. The introduction of virtualization
made a huge difference to the administrators. New skills were required and new options became
available, for quick deployment of new environments for example or easy rollback of an
environment to a previous snapshot. Planning machines no longer meant the same thing as
planning the hardware.

The next major wave of newness consisted of the introduction of middleware. The application
server is the core element and then several engines run on the application server—each
performing different functions that each required administrative effort in terms of installation,
configuration, and monitoring. Expertise on WebLogic Server as well as administration for the
Service Bus, the SOA Suite, WebCenter Content, and BPM Suite had to be built up.

24 Oracle SOA Suite 12c Handbook

Platform administration and infrastructure administration were identified as two individual
and complementary disciplines and some steps are being taken to organize and offer the platform
and infrastructure as private cloud services. Additionally, investigations have started into using
external cloud facilities for testing purposes such as load and stress testing.

DevOps
Gradually the world at large as well as the parties involved at Saibot Airport realized that the gap
between the project teams focusing on development and the administrators worried primarily
about the running production systems was both artificial and unproductive. Upon closer
inspection, it was realized that the stages visited for software development—design, build, test—
also apply to platform development and infrastructure construction. For these two layers too,
based on requirements, a design is created that is then implemented through installation and
configuration and subsequently tested—as shown in Figure 1-8. Functional requirements are the
main driver for the application development and nonfunctional requirements are the primary
force in platform and infrastructure development. The three layers are closely related—and the
way the work on them is performed and organized should reflect this close relation.

FIGURE 1-8. The main stages in preparation and execution across the three main IT layers

Application
(functional)

Design Build Test Monitor Modify
• Operational
• Analysis

• Urgent
• Planned

Prepare Execute (run-time)

Platform
(non functional)

Infrastructure

Application

SOA Suite

Application Server

Database

O/S

VM

Hardware

Chapter 1: Saibot Airport Reaching for the Future 25

On the right side in Figure 1-8 is the run time phase—when custom software and COTS is
deployed on the run time platform running on the production infrastructure. In this execution
phase all preparations should come to fruition and actual value is delivered to the business. The
entire stack is required to generate the business value—there can after all be no meaningful
business value with any piece of the stack lacking or underperforming. Across the stack, the
performance must be monitored to ensure the SLAs are met. Run time metrics are used for real
time—and even predictive—assessment of the operations. These metrics are also analyzed for
longer term trends.

Based on these operational findings as well as the longer term analysis and also fed by the
ongoing activities in the preparation phase, modifications at various layers in the stack will be
required. Some are urgent—instant responses to infrastructure or platform failures and urgent bug
fixes in custom software—and some can be planned with more lead time.

As a result of the analysis overhead, some platform and infrastructure specialists were
associated with and even embedded in software development teams and their activities were
organized in a similar way. Other teams were set up to take on the right side of Figure 1-8—with
members covering all layers of the stack. And both processes and tooling were instated to ensure
easy communication and handovers between the worlds of preparation and execution. The agile
approach with the frequent release of changes to applications, platform, and infrastructure made
it imperative to close this traditional gap between the worlds of design time and run time and
forced a much more integrated way of looking at the IT department at Saibot Airport.

Looking Forward
In the near future, Saibot Airport will continue executing the business program with the associated
IT projects. A major new focus in addition to the introduction of SOA is going to be the introduction
of BPM. Focus on business processes is strong—to ensure proper execution of procedures and
provide management information about current affairs as well as the ability to optimize and partially
automate the processes. It is hoped that new staff will require less training when they are guided to
the processes. And some of the actions will be turned into self service activities to be executed by
external parties.

Attracting new IT staff and building up internal expertise to reduce the dependency on
external consultants is very important to Saibot Airport. It is actively approaching local specialist,
trying to hire them away from their current employers. For its current staff, the airport is
organizing development programs that will help them build up skills around the newly
introduced technologies and methodologies. Staff can attend international conferences and
workshops in order to meet with peers and learn the latest information. Renowned speakers are
invited to conduct sessions at Saibot Airport itself—for internal staff as well as invitees that the
airport hopes to hire. The opportunity to play a key role in this major technology evolution in
combination with the facilities for personal development has already attracted a number of new
Oracle Fusion Middleware specialists to the ranks of the airport’s IT department.

In the slightly longer term, Saibot Airport hopes to do more with the data it is sitting on. It seems
that this data may be interesting for external parties. And the airport also hopes to learn more itself
about peak volumes and trends in order to streamline its processes and prepare its staff.

The development of mobile apps has only just started. Opening up multiple channels in
earnest is among the near future plans. Saibot Airport expects to leverage the layered architecture
and the reusable services to be able to quickly roll out new ways to interact.

26 Oracle SOA Suite 12c Handbook

Summary
The challenges for Saibot Airport are substantial—and very similar to those for many organizations
around the world. The mission and business objectives may vary—the steps to go through in terms
of IT close to identical across enterprises, industries, and countries. Agility and flexibility, digital,
paperless interactions and processes, self-service, and 24/7 availability through multiple channels
and near real-time operational insight are goals set by most organizations. At that broad level,
the means to these ends are quite similar as well, in terms of IT architecture and the required
technology components. Of course, many different vendors provide various products to address
the challenges—and different combinations of these products could be used to do the job. Saibot
Airport picked Oracle Fusion Middleware as its technology of choice—which makes it the perfect
case study for this book. Starting in Chapter 3, we will see how the airport uses the Oracle SOA
Suite in its quest for success. The next chapter first introduces the Oracle technology portfolio and
zooms in on Fusion Middleware. Then it describes the SOA Suite in particular—as to set the scene
for the remainder of the book.

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 61

CHAPTER
3

Planning and Managing
Tablespaces

03-ch03.indd 61 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

62 Oracle Database 12c DBA Handbook

How a DBA configures the layout of the tablespaces in a database directly affects the
performance and manageability of the database. In this chapter, we’ll review the different
types of tablespaces as well as how temporary tablespace usage can drive the size and

number of tablespaces in a database leveraging the temporary tablespace group feature introduced
in Oracle 10g.

I’ll also show how Oracle’s Optimal Flexible Architecture (OFA), supported since Oracle 7,
helps to standardize the directory structure for both Oracle executables and the database files
themselves; Oracle Database 12c further enhances OFA to complement its original role of
improving performance to enhancing security and simplifying cloning and upgrade tasks.

A default installation of Oracle provides the DBA with a good starting point, not only creating
an OFA-compliant directory structure but also segregating segments into a number of tablespaces
based on their function. We’ll review the space requirements for each of these tablespaces and
provide some tips on how to fine-tune the characteristics of these tablespaces.

Using Oracle Automatic Storage Management (ASM) as your logical volume manager makes
tablespace maintenance easier and more efficient by automatically spreading out the segments
within a tablespace across all disks of an ASM disk group. Adding datafiles to a tablespace is
almost trivial when using ASM; using bigfile tablespaces means you only have to allocate a single
datafile for the tablespace. In both cases, you don’t need to specify, or even need to know, the
name of the datafile itself within the ASM directory structure.

In Oracle Database 12c, container databases (CDBs) and pluggable databases (PDBs) in a
multitenant database architecture change how some tablespaces are used and managed in a
pluggable database. All permanent tablespaces can be associated with one and only one database—
either the CDB or one PDB. In contrast, temporary tablespaces or temporary tablespace groups
are managed at the CDB level and are used by all PDBs within the CDB. See Chapter 10 for an
in-depth discussion of the Oracle Database 12c multitenant architecture.

At the end of the chapter, I’ll provide some guidelines to help you place segments into different
tablespaces based on their type, size, and frequency of access, as well as ways to identify hotspots
in one or more tablespaces.

Tablespace Architecture
A prerequisite to competently setting up the tablespaces in your database is understanding the
different types of tablespaces and how they are used in an Oracle database. In this section, we’ll
review the different types of tablespaces and give some examples of how they are managed. In
addition, I’ll review the types of tablespaces by category—permanent tablespaces (SYSTEM,
SYSAUX, and so on), temporary tablespaces, undo tablespaces, and bigfile tablespaces—and
describe their function. Finally, I’ll also discuss Oracle’s Optimal Flexible Architecture (OFA)
and how it can ease maintenance tasks.

Tablespace Types
The primary types of tablespaces in an Oracle database are permanent, undo, and temporary.
Permanent tablespaces contain segments that persist beyond the duration of a session or a transaction.

Although the undo tablespace may have segments that are retained beyond the end of a session
or a transaction, it provides read consistency for SELECT statements that access tables being modified
as well as provides undo data for a number of the Oracle Flashback features of the database. Primarily,
however, undo segments store the previous values of columns being updated or deleted. This ensures

03-ch03.indd 62 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 3: Planning and Managing Tablespaces 63

that if a user’s session fails before the user issues a COMMIT or a ROLLBACK, the UPDATEs, INSERTs,
and DELETEs will be removed and will never be accessible by other sessions. Undo segments are
never directly accessible by a user session, and undo tablespaces may only have undo segments.

As the name implies, temporary tablespaces contain transient data that exists only for the
duration of the session, such as space to complete a sort operation that will not fit in memory.

Bigfile tablespaces can be used for any of these three types of tablespaces, and they simplify
tablespace management by moving the maintenance point from the datafile to the tablespace.
Bigfile tablespaces consist of one and only one datafile. There are a couple of downsides to bigfile
tablespaces, however, and they will be presented later in this chapter.

Permanent
The SYSTEM and SYSAUX tablespaces are two examples of permanent tablespaces. In addition,
any segments that need to be retained by a user or an application beyond the boundaries of a
session or transaction should be stored in a permanent tablespace.

SYSTEM Tablespace User segments should never reside in the SYSTEM or SYSAUX tablespace,
period. If you do not specify a default permanent or temporary tablespace when creating users,
the database-level default permanent and temporary tablespaces are used.

If you use the Oracle Universal Installer (OUI) to create a database for you, a separate tablespace
other than SYSTEM is created for both permanent and temporary segments. If you create a database
manually, be sure to specify both a default permanent tablespace and a default temporary tablespace,
as in the sample CREATE DATABASE command that follows.

CREATE DATABASE rjbdb
 USER SYS IDENTIFIED BY melsm25
 USER SYSTEM IDENTIFIED BY welisa45
 LOGFILE GROUP 1 ('/u02/oracle11g/oradata/rjbdb/redo01.log') SIZE 100M,
 GROUP 2 ('/u04/oracle11g/oradata/rjbdb/redo02.log') SIZE 100M,
 GROUP 3 ('/u06/oracle11g/oradata/rjbdb/redo03.log') SIZE 100M
 MAXLOGFILES 5
 MAXLOGMEMBERS 5
 MAXLOGHISTORY 1
 MAXDATAFILES 100
 MAXINSTANCES 1
 CHARACTER SET US7ASCII
 NATIONAL CHARACTER SET AL16UTF16
 DATAFILE '/u01/oracle11g/oradata/rjbdb/system01.dbf' SIZE 2G REUSE
 EXTENT MANAGEMENT LOCAL
 SYSAUX DATAFILE '/u01/oracle11g/oradata/rjbdb/sysaux01.dbf'
 SIZE 800M REUSE
 DEFAULT TABLESPACE USERS
 DATAFILE '/u03/oracle11g/oradata/rjbdb/users01.dbf'
 SIZE 4G REUSE
 DEFAULT TEMPORARY TABLESPACE TEMPTS1
 TEMPFILE '/u01/oracle11g/oradata/rjbdb/temp01.dbf'
 SIZE 500M REUSE
 UNDO TABLESPACE undotbs
 DATAFILE '/u02/oracle11g/oradata/rjbdb/undotbs01.dbf'
 SIZE 400M REUSE AUTOEXTEND ON MAXSIZE 2G;

03-ch03.indd 63 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

64 Oracle Database 12c DBA Handbook

As of Oracle 10g, the SYSTEM tablespace is locally managed by default; in other words, all
space usage is managed by a bitmap segment in the first part of the first datafile for the tablespace.
In a database where the SYSTEM tablespace is locally managed, the other tablespaces in the
database must also be locally managed or they must be read-only. Using locally managed
tablespaces takes some of the contention off the SYSTEM tablespace because space allocation
and deallocation operations for a tablespace do not need to use data dictionary tables. More
details on locally managed tablespaces can be found in Chapter 6. Other than to support the import
of a transportable tablespace that is dictionary managed from a legacy database, there are no
advantages to having a dictionary-managed tablespace in your database.

SYSAUX Tablespace Like the SYSTEM tablespace, the SYSAUX tablespace should not have any
user segments. The contents of the SYSAUX tablespace, broken down by application, can be
reviewed using Oracle Enterprise Manager Database Express (EM Express) or Cloud Control 12c.
You can edit the SYSAUX tablespace in Cloud Control 12c by choosing Administration | Storage |
Tablespaces and clicking the SYSAUX link in the tablespace list. Figure 3-1 shows a graphical
representation of the space usage within SYSAUX.

If the space usage for a particular application that resides in the SYSAUX tablespace becomes
too high or creates an I/O bottleneck through high contention with other applications that use the
SYSAUX tablespace, you can move one or more of these applications to a different tablespace. Any
SYSAUX occupant listed in Figure 3-1 that has a Change Tablespace link available can be moved
by clicking the link and then choosing a destination tablespace in the field shown in Figure 3-2.
The XDB objects will be moved to the SYSAUX2 tablespace. An example of moving a SYSAUX
occupant to a different tablespace using the command line interface can be found in Chapter 6.

The SYSAUX tablespace can be monitored just like any other tablespace; later in this chapter,
I’ll show how EM Cloud Control can help us to identify hotspots in a tablespace.

Undo
Multiple undo tablespaces can exist in a database, but only one undo tablespace can be active
at any given time for a single database instance. Undo tablespaces are used for rolling back
transactions, for providing read consistency for SELECT statements that run concurrently with DML
statements on the same table or set of tables, and for supporting a number of Oracle Flashback
features, such as Flashback Query.

The undo tablespace needs to be sized correctly to prevent ORA-01555 “Snapshot too old”
errors and to provide enough space to support initialization parameters such as UNDO_RETENTION.
More information on how to monitor, size, and create undo tablespaces can be found in Chapter 7.

Temporary
More than one temporary tablespace can be online and active in the database, but until Oracle
10g, multiple sessions by the same user would use the same temporary tablespace because only
one default temporary tablespace could be assigned to a user. To solve this potential performance
bottleneck, Oracle supports temporary tablespace groups. A temporary tablespace group is a
synonym for a list of temporary tablespaces.

A temporary tablespace group must consist of at least one temporary tablespace; it cannot be
empty. Once a temporary tablespace group has no members, it no longer exists.

One of the big advantages of using temporary tablespace groups is to provide a single user
with multiple sessions with the ability to use a different actual temporary tablespace for each
session. In the diagram shown in Figure 3-3, the user OE has two active sessions that need
temporary space for performing sort operations.

03-ch03.indd 64 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 3: Planning and Managing Tablespaces 65

Instead of a single temporary tablespace being assigned to a user, the temporary tablespace
group is assigned; in this example, the temporary tablespace group TEMPGRP has been assigned
to OE. However, because there are three actual temporary tablespaces within the TEMPGRP
temporary tablespace group, the first OE session may use temporary tablespace TEMP1, and the
SELECT statement executed by the second OE session may use the other two temporary tablespaces,
TEMP2 and TEMP3, in parallel. Before Oracle 10g, both sessions would use the same temporary
tablespace, potentially causing a performance issue.

FIGURE 3-1. EM Cloud Control 12c SYSAUX tablespace contents

03-ch03.indd 65 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

66 Oracle Database 12c DBA Handbook

FIGURE 3-3. Temporary tablespace group TEMPGRP

FIGURE 3-2. Using EM Cloud Control 12c to move a SYSAUX occupant

03-ch03.indd 66 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 3: Planning and Managing Tablespaces 67

Creating a temporary tablespace group is very straightforward. After creating the individual
tablespaces TEMP1, TEMP2, and TEMP3, we can create a temporary tablespace group named
TEMPGRP as follows:

SQL> alter tablespace temp1 tablespace group tempgrp;
Tablespace altered.
SQL> alter tablespace temp2 tablespace group tempgrp;
Tablespace altered.
SQL> alter tablespace temp3 tablespace group tempgrp;
Tablespace altered.

Changing the database’s default temporary tablespace to TEMPGRP uses the same command
as assigning an actual temporary tablespace as the default; temporary tablespace groups are treated
logically the same as a temporary tablespace:

SQL> alter database default temporary tablespace tempgrp;
Database altered.

To drop a tablespace group, we must first drop all its members. Dropping a member of a
tablespace group is accomplished by assigning the temporary tablespace to a group with an empty
string (in other words, removing the tablespace from the group):

SQL> alter tablespace temp3 tablespace group '';
Tablespace altered.

As you might expect, assigning a temporary tablespace group to a user is identical to assigning
a temporary tablespace to a user; this assignment can happen either when the user is created or at
some point in the future. In the following example, the new user JENWEB is assigned the temporary
tablespace TEMPGRP:

SQL> create user jenweb identified by pi4001
 2 default tablespace users
 3 temporary tablespace tempgrp;
User created.

Note that if we did not assign the tablespace during user creation, the user JENWEB would
still be assigned TEMPGRP as the temporary tablespace because it is the database default from our
previous CREATE DATABASE example.

A couple of changes were made to the data dictionary views in Oracle Database 10g and
Oracle Database 11g to support temporary tablespace groups. The data dictionary view DBA_USERS
still has the column TEMPORARY_TABLESPACE, as in previous versions of Oracle, but this column
may now contain either the name of the temporary tablespace assigned to the user or the name of
a temporary tablespace group:

SQL> select username, default_tablespace, temporary_tablespace
 2 from dba_users where username = 'JENWEB';

USERNAME DEFAULT_TABLESPACE TEMPORARY_TABLESPACE
-------------------- ------------------ --------------------
JENWEB USERS TEMPGRP

1 row selected.

03-ch03.indd 67 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

68 Oracle Database 12c DBA Handbook

The new data dictionary view DBA_TABLESPACE_GROUPS shows the members of each
temporary tablespace group:

SQL> select group_name, tablespace_name from dba_tablespace_groups;

GROUP_NAME TABLESPACE_NAME
---------------------------- ----------------------------
TEMPGRP TEMP1
TEMPGRP TEMP2
TEMPGRP TEMP3

3 rows selected.

As with most every other feature of Oracle that can be accomplished with the command line,
assigning members to temporary tablespace groups or removing members from temporary
tablespace groups can be performed using EM Cloud Control 12c. In Figure 3-4, we can add or
remove members from a temporary tablespace group.

Bigfile
A bigfile tablespace eases database administration because it consists of only one datafile. The
single datafile can be up to 128TB (terabytes) in size if the tablespace block size is 32KB; if you
use the more common 8KB block size, 32TB is the maximum size of a bigfile tablespace. Many of
the commands previously available only for maintaining datafiles can now be used at the tablespace
level if the tablespace is a bigfile tablespace. Chapter 6 reviews how BIGFILE tablespaces are
created and maintained.

The maintenance convenience of bigfile tablespaces can be offset by some potential
disadvantages. Because a bigfile tablespace is a single datafile, a full backup of a single large
datafile will take significantly longer than a full backup of several smaller datafiles (with the same
total size as the single bigfile tablespace) even when Oracle uses multiple slave processes per
datafile. If your bigfile tablespaces are read-only or if only changed blocks are backed up on a
regular basis, the backup issue may not be critical in your environment. If you use the SECTION
SIZE option in RMAN, available as of Oracle Database 11g, then an entire bigfile tablespace
(and therefore the entire datafile) can be backed up in parallel.

Optimal Flexible Architecture
Oracle’s Optimal Flexible Architecture (OFA) provides guidelines to ease the maintenance of the
Oracle software and database files as well as improve the performance of the database by placing
the database files such that I/O bottlenecks are minimized.

Although using OFA is not strictly enforced when you’re installing or maintaining an Oracle
environment, using OFA makes it easy for someone to understand how your database is organized
on disk, preventing that phone call in the middle of the night during the week you’re on vacation!

OFA is slightly different depending on the type of storage options you use: either an ASM
environment or a standard operating system file system that may or may not be using a third-party
logical volume manager or RAID-enabled disk subsystem. In either case, the Database Configuration
Assistant can create an OFA-compliant datafile directory structure for you.

03-ch03.indd 68 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 3: Planning and Managing Tablespaces 69

Non-ASM Environment
In a non-ASM environment on a Unix server, at least three file systems on separate physical
devices are required to implement OFA recommendations. Starting at the top, the recommended
format for a mount point is /<string const><numeric key>, where <string const> can be one or
several letters and <numeric key> is either two or three digits. For example, on one system we
may have mount points /u01, /u02, /u03, and /u04, with room to expand to an additional 96
mount points without changing the file-naming convention. Figure 3-5 shows a typical Unix file
system layout with an OFA-compliant Oracle directory structure.

There are two instances on this server: an ASM instance to manage disk groups and a standard
RDBMS instance (dw).

FIGURE 3-4. Using EM Cloud Control 12c to edit temporary tablespace groups

03-ch03.indd 69 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

70 Oracle Database 12c DBA Handbook

Software Executables The software executables for each distinct product name reside in the
directory /<string const><numeric key>/<directory type>/<product owner>, where <string const>
and <numeric key> are defined previously, <directory type> implies the type of files installed in
this directory, and <product owner> is the name of the user that owns and installs the files in this
directory. For example, /u01/app/oracle would contain application-related files (executables)
installed by the user oracle on the server. The directory /u01/app/apache would contain the
executables for the middleware web server installed from a previous version of Oracle.

As of Oracle 10g, the OFA standard makes it easy for the DBA to install multiple versions of
the database and client software within the same high-level directory. The OFA-compliant Oracle
home path, corresponding to the environment variable ORACLE_HOME, contains a suffix that
corresponds to the type and incarnation of the installation. For example, one installation of

FIGURE 3-5. OFA-compliant Unix directory structure

03-ch03.indd 70 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 3: Planning and Managing Tablespaces 71

Oracle 12c, one installation of Oracle 11g, two different installations of Oracle 10g, and one
installation of Oracle9i may reside in the following three directories:

/u01/app/oracle/product/9.2.0.1
/u01/app/oracle/product/10.1.0/db_1
/u01/app/oracle/product/10.1.0/db_2
/u01/app/oracle/product/11.1.0/db_1
/u01/app/oracle/product/12.1.0/dbhome_1

At the same time, the Oracle client executables and configuration may be stored in the same
parent directory as the database executables:

/u01/app/oracle/product/12.1.0/client_1

Some installation directories will never have more than one instance for a given product; for
example, Oracle Grid Infrastructure (one installation per server) will be installed in the following
directory given the previous installations:

/u01/app/oracle/product/12.1.0/grid

Because Grid Infrastructure can be installed only once on a system, it does not have an
incrementing numeric suffix.

Database Files Any non-ASM Oracle datafiles reside in /<mount point>/oradata/<database
name>, where <mount point> is one of the mount points we discussed earlier, and <database
name> is the value of the initialization parameter DB_NAME. For example, /u02/oradata/rac0
and /u03/oradata/rac0 would contain the non-ASM control files, redo log files, and datafiles for
the instance rac0, whereas /u05/oradata/dev1 would contain the same files for the dev1 instance
on the same server. The naming convention for the different file types under the oradata directory
are detailed in Table 3-1.

Although Oracle tablespace names can be as long as 30 characters, it is advisable to keep the
tablespace names eight characters or less in a Unix environment. Because portable Unix filenames
are restricted to 14 characters, and the suffix of an OFA datafile name is <n>.dbf, where n is two digits,
a total of six characters are needed for the suffix in the file system. This leaves eight characters for
the tablespace name itself.

File Type Filename Format Variables

Control files control.ctl None.

Redo log files redo<n>.log n is a two-digit number.

Datafiles <tn>.dbf t is an Oracle tablespace name, and n is a two-digit number.

TABLE 3-1. OFA-Compliant Control File, Redo Log File, and Datafile Naming Conventions

03-ch03.indd 71 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

72 Oracle Database 12c DBA Handbook

Only control files, redo log files, and datafiles associated with the database <database name>
should be stored in the directory /<mount point>/oradata/<database name>. For the database ord
managed without ASM, the datafile names are as follows:

SQL> select file#, name from v$datafile;

 FILE# NAME
---------- -----------------------------------
 1 /u05/oradata/ord/system01.dbf
 2 /u05/oradata/ord/undotbs01.dbf
 3 /u05/oradata/ord/sysaux01.dbf
 4 /u05/oradata/ord/users01.dbf
 5 /u09/oradata/ord/example01.dbf
 6 /u09/oradata/ord/oe_trans01.dbf
 7 /u05/oradata/ord/users02.dbf
 8 /u06/oradata/ord/logmnr_rep01.dbf
 9 /u09/oradata/ord/big_users.dbf
 10 /u08/oradata/ord/idx01.dbf
 11 /u08/oradata/ord/idx02.dbf
 12 /u08/oradata/ord/idx03.dbf
 13 /u08/oradata/ord/idx04.dbf
 14 /u08/oradata/ord/idx05.dbf
 15 /u08/oradata/ord/idx06.dbf
 16 /u08/oradata/ord/idx07.dbf
 17 /u08/oradata/ord/idx08.dbf
17 rows selected.

Other than file numbers 8 and 9, all the datafiles in the ord database are OFA compliant and
are spread out over four different mount points. The tablespace name in file number 8 is too long,
and file number 9 does not have a numeric two-digit counter to represent new datafiles for the
same tablespace.

ASM Environment
In an ASM environment, the executables are stored in the directory structure presented previously;
however, if you browsed the directory /u02/oradata in Figure 3-5, you would see no files. All the
control files, redo log files, and datafiles for the instance dw are managed by the ASM instance
+ASM on this server.

The actual datafile names are not needed for most administrative functions because ASM files
are all Oracle Managed Files (OMF). This eases the overall administrative effort required for the
database. Within the ASM storage structure, an OFA-like syntax is used to subdivide the file types
even further:

SQL> select file#, name from v$datafile;

 FILE# NAME
---------- --
 1 +DATA/dw/datafile/system.256.622426913
 2 +DATA/dw/datafile/sysaux.257.622426915
 3 +DATA/dw/datafile/undotbs1.258.622426919

03-ch03.indd 72 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 3: Planning and Managing Tablespaces 73

 4 +DATA/dw/datafile/users.259.622426921
 5 +DATA/dw/datafile/example.265.622427181
5 rows selected.

SQL> select name from v$controlfile;

NAME
--
+DATA/dw/controlfile/current.260.622427059
+RECOV/dw/controlfile/current.256.622427123
2 rows selected.

SQL> select member from v$logfile;

MEMBER
--
+DATA/dw/onlinelog/group_3.263.622427143
+RECOV/dw/onlinelog/group_3.259.622427145
+DATA/dw/onlinelog/group_2.262.622427135
+RECOV/dw/onlinelog/group_2.258.622427137
+DATA/dw/onlinelog/group_1.261.622427127
+RECOV/dw/onlinelog/group_1.257.622427131
6 rows selected.

Within the disk groups +DATA and +RECOV, we see that each of the database file types, such
as datafiles, control files, and online log files, has its own directory. Fully qualified ASM filenames
have the format

+<group>/<dbname>/<file type>/<tag>.<file>.<incarnation>

where <group> is the disk group name, <dbname> is the database to which the file belongs,
<file type> is the Oracle file type, <tag> is information specific to the file type, and the pair
<file>.<incarnation> ensures uniqueness within the disk group.

Automatic Storage Management is covered in Chapter 6.

Oracle Installation Tablespaces
Table 3-2 lists the tablespaces created with a standard Oracle 12c installation using the Oracle
Universal Installer (OUI); the EXAMPLE tablespace is optional; it is installed if you specify that you
want the sample schemas created during the installation.

03-ch03.indd 73 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

74 Oracle Database 12c DBA Handbook

SYSTEM
As mentioned previously in this chapter, no user segments should ever be stored in the SYSTEM
tablespace. The clause DEFAULT TABLESPACE in the CREATE DATABASE command helps to
prevent this occurrence by automatically assigning a permanent tablespace for all users that have
not explicitly been assigned a permanent tablespace. An Oracle installation performed using the
OUI will automatically assign the USERS tablespace as the default permanent tablespace.

The SYSTEM tablespace will grow more quickly the more you use procedural objects such as
functions, procedures, triggers, and so forth, because these objects must reside in the data dictionary.
This also applies to abstract datatypes and Oracle’s other object-oriented features.

SYSAUX
As with the SYSTEM tablespace, user segments should never be stored in the SYSAUX tablespace.
If one particular occupant of the SYSAUX tablespace takes up too much of the available space or
significantly affects the performance of other applications that use the SYSAUX tablespace, you
should consider moving the occupant to another tablespace.

TEMP
Instead of one very large temporary tablespace, consider using several smaller temporary
tablespaces and creating a temporary tablespace group to hold them. As you found out earlier
in this chapter, this can improve the response time for applications that create many sessions
with the same username. For Oracle container databases and pluggable databases (in Oracle’s
multitenant architecture, new to Oracle Database 12c), the container database owns the temporary
tablespace used by all plugged-in databases.

UNDOTBS1
Even though a database may have more than one undo tablespace, only one undo tablespace can
be active at any given time for a given instance. If more space is needed for an undo tablespace,
and AUTOEXTEND is not enabled, another datafile can be added. One undo tablespace must be
available for each node in a Real Application Clusters (RAC) environment because each instance
manages its own undo.

Tablespace Type
Segment Space
Management

Approx. Initial
Allocated Size (MB)

SYSTEM Permanent Manual 790

SYSAUX Permanent Auto 1000

TEMP Temporary Manual 160

UNDOTBS1 Permanent Manual 180

USERS Permanent Auto 255

EXAMPLE Permanent Auto 358

TABLE 3-2. Standard Oracle Installation Tablespaces

03-ch03.indd 74 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 3: Planning and Managing Tablespaces 75

USERS
The USERS tablespace is intended for miscellaneous segments created by each database user, and
it’s not appropriate for any production applications. A separate tablespace should be created for
each application and segment type; later in this chapter I’ll present some additional criteria you
can use to decide when to segregate segments into their own tablespace.

EXAMPLE
In a production environment, the EXAMPLE tablespace should be dropped; it takes up hundreds of
megabytes of disk space and has examples of all types of Oracle segments and data structures.
A separate database should be created for training purposes with these sample schemas; for an
existing training database, the sample schemas can be installed into the tablespace of your choice
by using the scripts in $ORACLE_HOME/demo/schema.

Segment Segregation
As a general rule of thumb, you want to divide segments into different tablespaces based on their
type, size, and frequency of access. Furthermore, each of these tablespaces would benefit from
being on its own disk group or disk device; in practice, however, most shops will not have the
luxury of storing each tablespace on its own device. The following list identifies some of the
conditions you might use to determine how segments should be segregated among tablespaces.
The list is not prioritized because the priority depends on your particular environment. Using ASM
eliminates many of the contention issues listed with no additional effort by the DBA. ASM is discussed
in detail in Chapter 4. In most of these scenarios the recommendations primarily enhance
manageability over performance to enhance availability.

 ■ Big segments and small segments should be in separate tablespaces, especially for
manageability and reclaiming empty space from a large table.

 ■ Table segments and their corresponding index segments should be in separate tablespaces
(if you are not using ASM and each tablespace is stored in its own set of disks).

 ■ A separate tablespace should be used for each application.

 ■ Segments with low usage and segments with high usage should be in different tablespaces.

 ■ Static segments should be separated from high DML segments.

 ■ Read-only tables should be in their own tablespace.

 ■ Staging tables for a data warehouse should be in their own tablespace.

 ■ Tablespaces should be created with the appropriate block size, depending on whether
segments are accessed row by row or in full table scans.

 ■ Tablespaces should be allocated for different types of activity, such as primarily UPDATEs,
primarily read-only, or temporary segment usage.

 ■ Materialized views should be in a separate tablespace from the base table.

 ■ For partitioned tables and indexes, each partition should be in its own tablespace.

Using EM Cloud Control 12c, you can identify overall contention on any tablespace by
identifying hotspots, either at the file level or at the object level. We’ll cover performance tuning,
including resolving I/O contention issues, in Chapter 8.

03-ch03.indd 75 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

76 Oracle Database 12c DBA Handbook

Summary
The basic logical building block of a database is the tablespace. It consists of one or more physical
datafiles, only one datafile if you create a bigfile tablespace. Whether you’re creating a permanent,
undo, or temporary tablespace you can create those tablespaces as bigfile tablespaces for ease of
management.

When you create tablespaces or other objects, you can use Optimal Flexible Architecture (OFA)
to automatically create an appropriate OS file name and directory location. This is even more
useful in an ASM environment where you only need to specify the disk group name; Oracle puts
it in the right directory location automatically and you may never need to know where in the ASM
file structure Oracle places the object.

In a default Oracle database installation, Oracle creates five required tablespaces: SYSTEM,
SYSAUX, TEMP, UNDOTBS1, and USERS; if you choose to install the sample schemas they will
exist in the EXAMPLE tablespace. You will most likely create many more tablespaces in your
environment to segregate applications to their own tablespace or to restrict how much disk space
a tablespace may use for that application.

03-ch03.indd 76 13/05/15 9:55 AM

ORACLE FLUFF / Oracle Data Integration: Tool for Harnessing Data / Malcher / 165-2 / Chapter 1

CHAPTER
1

Data Integrations
Overview

01-ch01.indd 1 18/09/15 12:04 PM

 2 Oracle Data Integration: Tool for Harnessing Data

ORACLE FLUFF / Oracle Data Integration: Tool for Harnessing Data / Malcher / 165-2 / Chapter 1

Data is an extremely valuable frontier for the enterprise. Some
companies have pulled away from their competition because of
their use of data. They understand the value the information brings

in making things more efficient, knowing their customers, and advancing
their products based on known needs. Data can be a powerful tool in
driving business decisions and providing tremendous value. The question is
how to harness this data and the power of the information.

There are two ways of approaching the data: a technical one, which will
be covered in this book, and a business one. The business approach means
that each company has to apply its own expertise of its respective industry
and field of business in order to decide how to gain and exploit additional
insights from the data. Leveraging the technology will provide a way to
harness the data using those insights. Companies that leverage their data
and know how to use the information realize that the efforts needed to keep
the data updated are well worth it. In this sense, data should be handled as
assets. The internal data has to be protected and managed to provide the
details across the enterprise, and not just focused on one line of business or
product. Depending on the industry, the type of data being collected will
require different regulations around the data, which adds complexity to how
the data can be used and shared. This adds governance around the data and
reasons for business rules to manage and maintain it. The amount of data
being collected might even increase questions around what data filters are
important. This might also involve the need for analytics and other analysis
before the data is used in conjunction with other systems.

The Big Data technologies all over the news these days might give the
impression that filtering just some of the data available is a thing of the past.
However, the volume of data being generated grows so fast that filtering—at
least for analysis of significant data sets—remains an important processing
step. This filtering of data provides the data sets needed to integrate with
company-specific data for an even more powerful analysis.

The starting point for building systems that utilize the value of data is to
begin asking questions. Questions should be formulated to determine the
problems the company is trying to solve with the data, and a data strategy
can be developed based on these questions. Data strategies are based on
business needs and where to get value, and they determine what type of
data is collected and integrated. It is amazing what can be done with data—
from actually saving lives to anticipating customer needs. As an example, a
healthcare company can become more efficient in its processes of gathering
medical information and then correlating that data with medical issues to

01-ch01.indd 2 18/09/15 12:04 PM

 Chapter 1: Data Integrations Overview 3

ORACLE FLUFF / Oracle Data Integration: Tool for Harnessing Data / Malcher / 165-2 / Chapter 1

provide a more comprehensive patient history, which leads to better patient
care and valuable repository of information about the patients. Another
example is an IT department understanding how the various environments,
systems, and applications interface within an enterprise; for example, which
database supports what applications and on what servers and networks. The
support of these systems requires not only issuing upgrades and patches, but
also the ability to communicate with the right teams and application owners
whenever an issue arises or maintenance needs to be completed. Having an
effective data strategy in place helps streamline the communication issues
involving maintenance and test plans. These are the types of issues that can
be addressed with the analysis of the data.

Internal company data presents excellent information about the enterprise
and can be used to answer several questions. Merging data from multiple sets
and sources gives new and better insights than just analyzing single-source
data sets. Internal systems can be integrated to provide comprehensive data for
various departments. Add into that external data sources, and the data can be
enriched and probably becomes more complete. The external sources can be
standard data sets that are common for industries, governments, regulations,
markets, and any other source of data one can think of. It is also possible to
subscribe to outside data sources—and with these data sources integrating
with the internal sources, the enhanced data and analytics provide more than
just an internal picture, but a larger industry picture.

The questions can then be greater and further reaching to provide a
deeper look and expand beyond the initial thoughts and research. Now, as
the questions are flying and the company is thinking of the possibilities of
how to use the data, a plan has to come together—a master plan of the data
from master data management, data governance and quality, and of course
data integrations.

What Is a Data Integration?
At this point, it might be fine to continue by discussing tools and step-
by-step directions for data integrations, but we’ll start with a discussion
around what data integrations are. Data can be in various formats as well as
different databases and systems. Applications that collect and use data can
keep the data contained. It is when the application needs an outside source
of information or has valuable information to share with other systems that
the data is considered for integrations.

01-ch01.indd 3 18/09/15 12:04 PM

 4 Oracle Data Integration: Tool for Harnessing Data

ORACLE FLUFF / Oracle Data Integration: Tool for Harnessing Data / Malcher / 165-2 / Chapter 1

Taking data from one system and combining it with data from another
system, based on a common identifier, for use as a data set is the underlying
idea of data integrations. Numerous forms of data integration are available. It
can be as simple as having a table in an Oracle database and running a query
against another table in a different Oracle database. The combined query
has to provide the method for the integration. This data can then be loaded
into another database or a data warehouse. It can even just be joined in a
materialized view (that is, a view that is a snapshot of the data) for reporting.

Data integrations most likely come into the equation when new questions
are asked. There is normally an existing system, and answering a question
means pulling data from another place and enhancing the data.

Data integrations mean that data can come from almost any platform
and format—especially with today’s information being collected from
everywhere. Data is being tracked about when we sleep, exercise, and eat.
The number of people going into brick-and-mortar stores versus shopping
online is counted, and information is gathered about what the weather was
on a particular day. Devices and systems collecting high volumes of data in
nonrelational data stores can still allow data to be integrated with relational
databases.

It all comes back to the data that is available for processing and the
information that can be integrated into various data sets. Data warehouses
load data from various sources to integrate it into a consolidated location for
reporting and as a source of data for other applications to use.

Integrating data can be in done in several steps—from simple statements
to complex sources of data that need business rules and controls around them
to be able to consume the data for the other purposes. Tools are needed to
perform the integrations, a plan is needed to understand the data and the
quality of the data, and governance is needed to maintain the system to
continuously provide consistent data. More importantly, domain know-how is
required to formulate meaningful analysis and interpretations of the data.

History of Data Integration
Data integration used to be simpler. Most of the data would be housed in
just a couple of systems. There were not as many options to get data, and
not as much information was yet being provided from the Internet. There
were fewer sensors and data collection processes in production lines and at

01-ch01.indd 4 18/09/15 12:04 PM

 Chapter 1: Data Integrations Overview 5

ORACLE FLUFF / Oracle Data Integration: Tool for Harnessing Data / Malcher / 165-2 / Chapter 1

consumer sources. Smartphones were not yet around either. Maybe the right
questions were not being asked to see the need for different data sources.
The applications collecting the data also fed data warehouses to provide the
consolidated data.

A data warehouse can have historical and current data, but the main
purpose is to centrally store the data. Having this centralized repository allows
the business to point to the data warehouse for reporting and analysis. A data
mart is a focused and simpler form of a data warehouse; it is used for one
subject or functional area. Populating the data warehouses and data marts
requires the processes for data integrations, as data warehouses continue to
be an important way to store the integrated data.

The amount of data is continuously growing. Today, more sensors
and objects provide constant data, and some of these can even talk to
smartphones. In addition, the Internet continues to provide more and more
information. In other words, there is not going to be any less data going
forward. Hopefully, though, it is smarter data—that is, the right information
being gathered, along with the right questions being asked.

In the past, it was also typical that data integrations were an integral
part of migrations to a new application. Either one company purchased
another company or a new system was implemented. This caused a
need for the existing systems to be migrated into one for the new entity.
Migrations are a whole project in themselves, but they usually have data
integration aspects as part of their execution. When combining the two
systems, it would make sense for the company to integrate the data as part
of the migration plan.

Outside of the data warehouses and migrations, many of the systems were
built as stand-alone environments. It was not always expected that another
system would ever use the data in these databases. There was no plan or
thought given to what would happen if these data sources were combined to
provide additional information.

Data integrations have taken on the following forms:

 ■ Manual integrations These integrations use queries to pull out the
needed information.

 ■ Common and uniform access The data has the same look and feel
and a single access point for the client.

01-ch01.indd 5 18/09/15 12:04 PM

 6 Oracle Data Integration: Tool for Harnessing Data

ORACLE FLUFF / Oracle Data Integration: Tool for Harnessing Data / Malcher / 165-2 / Chapter 1

 ■ Application integrations Applications pull data from different
sources to feed the results to the user.

 ■ Common data Provides a single access point for the data that is
gathered and pulled together for the user. This involves the use of the
following:

 ■ Queries and materialized views

 ■ Data warehouses

 ■ Common data stores

Common data can also mean common data storage. Queries, materialized
views, and portals are used to provide a common access point for common
data. It is a way for the data to be combined, to make the database uniform,
and use queries and reporting access. Using a data warehouse is another way
to integrate data to a common source. There might also be additional data
stores for a common place to access and store data.

A group of databases is an example of a model used for relational
databases to be logically joined together for integration. The data can be in
different databases, and still a query across databases could join the data
because they share a similar query language and structure. This doesn’t
necessarily mean bringing the data into one physical location; different
sources can be used to create views or reports and provide the integration of
the sources of data. This illustrates a simpler method because the data types
are similar; it isn’t until NoSQL that unstructured data sources start being
added in. Peer-to-peer methods enable a peer application access to another.
Again, the databases are dispersed, but access can be consistent and have a
single access point.

With these ways of integrating data, there are still several issues with data
integrations, and no single way to solve these problems.

Integrations Today
Issues that exist today with data integrations mainly involve large sets
of data that keep getting larger and need integrations and automated
processes. Performing data integrations is not easy, but the value of the
data is worth the effort.

01-ch01.indd 6 18/09/15 12:04 PM

 Chapter 1: Data Integrations Overview 7

ORACLE FLUFF / Oracle Data Integration: Tool for Harnessing Data / Malcher / 165-2 / Chapter 1

The systems that need the data integration might only require a filter
of read-only data to form a new set based on the integration. This filtering
process might actually exclude data from the integration because no one
knew the right questions to ask or maybe even the wrong questions were
being asked. Therefore, data might be missing because of this exclusion if
different questions are asked later or other data is required. Missing data or
data that’s not provided is something that is seen regularly in technology
systems. There are discussions concerning servers, the applications and
databases on these servers, what other servers have dependencies, and
the owners for all of these items. With constant changes to configurations,
applications, and owners, it is difficult to keep the data up to date, so it might
be left out of the integration. There might also be other systems that keep
part of the data, such as the configurations. This data is not always included
in the integration through the filtering because it is not regularly part of the
requirements—that is, until a question is asked or new reasons arise to keep
the data. The process is just updating information in a system, but even this list
of servers, applications, and owners could provide key details for automated
systems or operational processes to create efficiencies. These systems might
have different sources of data for all of these pieces of information, which are
normally integrated from these different systems to pull together a system of
record for the server. There seems to be several operational processes and
procedures that can be solved by having consistent configuration management
data and information. The right filtering or the realization that there are other
uses for data needs to be taken into consideration for the data integration
process. Filtering data too soon or not asking all of the questions up front can
cause sources to be restricted and limited.

This leads into another issue: the fact that systems were not designed
for integrations. If there was no initial requirement for another application
to need the same information, it was not built into or planned as part of the
application. New systems should be designed for others to consume the data.
The company should assume that data is not being used for just one thing
and that at some point someone is going to want to use that information for
another purpose. During the development and data workflow stages, designs
should include ways to extract the data and make it usable by others and
different applications. Also, APIs should be provided through code, data
stores, views, and so on. Quite a few options are available, so including this in
the design of the application or just planning for others to use the data will be
advantageous for future data integrations.

01-ch01.indd 7 18/09/15 12:04 PM

 8 Oracle Data Integration: Tool for Harnessing Data

ORACLE FLUFF / Oracle Data Integration: Tool for Harnessing Data / Malcher / 165-2 / Chapter 1

Figure 1-1 shows the components needed for data integrations to happen
at the enterprise level.

The components listed in Figure 1-1 will be discussed in more detail
throughout the rest of the book. Notice that there are some initial architecture
and data governance steps with data classification and master data management
that will make the data easier to integrate. Developing these strategies leads to
better data and better integrations. Using common formats and understanding
what the data is are both keys to being able to consume the completed data set.
The business needs can flow into these steps, but it’s still important to ask the
right questions.

In order to look into how to perform data integrations, we’ll discuss these
topics of the data components first. Understanding how the environment is
set up and how data requirements and issues are a part of the development
of an integration strategy. The components are shown in no particular order,
and some environments are going to have more advanced definitions and
processes in these various areas. To have effective processes for the data so
that it is providing value, these areas need to be addressed.

FIGURE 1-1. Data integration components

Data Merge
and ETL

Metadata
Management

Data Quality
& Cleansing

Data Types
Structured &
Unstructured

Data

Data
Warehouse

Master Data
Management

Data
Classi�cation

Data
Migration &
Replication

01-ch01.indd 8 18/09/15 12:04 PM

 Chapter 1: Data Integrations Overview 9

ORACLE FLUFF / Oracle Data Integration: Tool for Harnessing Data / Malcher / 165-2 / Chapter 1

To begin, master data management (MDM) provides the specifics about
the data and data sources. The sources of data are defined and documented.
With external sources of data, the source of the truth and data formats will be
part of an MDM strategy. Knowing and understanding the data and where it
is coming from allows for reuse in other systems. For proficiency, master data
management requires business and upper management support. It also ties
into data governance and how the data is used in the company. You can see
why this ties into data integrations. Not only can the data integrations be used
in the MDM strategy, but the understanding of the data is essential for some
of the data integrations.

Data classification is a component that can be used in the data
integrations workflow. The data can be sensitive data, a source of truth,
or another classification. The sensitivity of the data is important to know if
the data needs a certain level of security and therefore might be restricted
in use with integrations. The classification of being the true source of data
is integral for where to pull data from in order to match it up and use it for
mappings. Data classification tags the data with the needed attributes so that
the company knows when it can and can’t be used, or with what systems it
should be used. This can be part of the development strategy in planning for
future integrations or for current processes to use the right source of data.

Data merge and ETL (Extract, Transform, and Load) are processes that
use the data source to match and map the needed records and fields. The
transformation process can use data integrations for the proper mapping in
order to load the data into a data store, data warehouse, or other application.
The data merge process is really performing the data integration, in that it
merges data sets together. These tools perform the merger or transformation of
the data to load the results as needed. Chapters 2 and 3 discuss how queries
and other database processes perform these steps.

Data migration and replication can be done in various ways as well.
Normally, a mapping of the information is needed to be able to migrate the
data to a new system. The migration might involve the same data moving
from one system to another to be used by a different application, or it might
be two or more applications combining their data to be migrated to a new
data store or a whole new application. Nevertheless, these processes perform
data migrations to move the data. Replication also duplicates the data to be
used in a different place. These components are discussed in more detail as
part of Chapter 4.

01-ch01.indd 9 18/09/15 12:04 PM

 10 Oracle Data Integration: Tool for Harnessing Data

ORACLE FLUFF / Oracle Data Integration: Tool for Harnessing Data / Malcher / 165-2 / Chapter 1

Because data comes in all shapes and sizes—from external and internal
sources—there needs to be a way to bring the data together. Integration of
similar types of data provides for more straightforward processes and similar
data stores. Unstructured data and data from outside the realm of relational
databases require different ways of integrating. Chapter 8 focuses on Big
Data and how to pull it. Enhancing existing structured data with unstructured
data is where the analytics get interesting and opens up a whole new set of
questions and possibilities. These challenges are where the future of data
integrations lies because of all the new data coming in now.

Even though data quality and cleansing are really strategies that belong
with master data management and data governance, poor quality data will
create havoc on any data integration. The testing of the data quality as well as
the data cleanup processes is vital to the systems. Because of this, the topics
of data quality and cleansing receive a complete chapter: Chapter 7. Not
only can data integrations help with the data cleanup, but having the quality
of the data tested and confirmed will provide consistent and reliable data
integrations. Data quality brings with it a whole set of challenges and needs to
be addressed before a data integration for strategic data use is attempted.

Even though the use of a data warehouse is a past way of bringing data
together, it is not a dying breed, and will continue to be vital going forward.
Data warehouses might transform into different platforms and have different
types of data available, but they provide a stable set of data that uses standard
processes to have the centralized repository of data. Data integrations are
used every step of the way for data warehouses—from loading to reporting.
Every data store can be a small part in a bigger data warehouse picture.
Simplifying an already complex set of data coming from all over the place to
a centralized location can be an asset for several lines of business. They might
be pulling data from different sources and integrating it with nonrelational
sources on the fly, but for performance in reporting and analytics, having the
combined data in a warehouse will provide a way to decrease the access time
with the right set of information. The steps along the way might not store the
integrated data because of the APIs or the way the data can be pulled, but
that doesn’t mean the data can’t end up in a data warehouse.

Metadata management defines the columns and what the data actually
means; it allows for proper data mappings. Without the metadata being
defined and communicated, different lines of business might be using a
certain column or table for something it wasn’t intended for, and thus creating
integrations that produce incorrect sources. The characterization of the data is

01-ch01.indd 10 18/09/15 12:04 PM

 Chapter 1: Data Integrations Overview 11

ORACLE FLUFF / Oracle Data Integration: Tool for Harnessing Data / Malcher / 165-2 / Chapter 1

also part of the data cleansing, quality, and master data management efforts.
Are you starting to see a pattern here? These components are all tied nicely
together; they are integrated just as the data inside of them needs to be
integrated. Being lopsided in components or not spending the time to manage
the metadata or the quality of the data will lead to bad information. Decisions
that are made from poor data will have the opposite effect on the business as
using the right information with the right data and asking the right questions.

It is not easy to align all these components. However, if the right questions
are being asked now, and the data is available to answer them, it will be well
worth the effort to plan, manage, and maintain a system that has integrated
data and tools to report and visualize the data, thus resulting in tremendous
business value.

Decision Flow Chart
After the discussion of the various components of data integration, decisions
need to be made about how to handle the data flow—decisions about the
technologies, tools, and how to match the business needs.

These decisions involve what data is needed, frequency, management tools,
and how to handle changes. The stakeholders need to be involved in helping
make these decisions because they have a vested interest in the data or the
processes. Technologists cannot make decisions in isolation about what tools
to use because the business and data owners will be the ones using them. Data
owners can set the data definitions and the frequency required, but they need
help in deciding what tools to use to accomplish what they are looking for.

The problem is that not everyone is communicating. Perhaps the data
owners are working in isolation because they don’t believe they need other
data and are not sure that the data should be shared. The first decision that
actually has to be made is who is going to own the data and if the data, or
what parts of the data, are going to be shared.

A lot depends on making good decisions and communicating with the
various teams. Successful data integrations have proper data requirements. As
shown in Figure 1-2, data requirements comprise the next couple of decisions.
Defining the owner of the data will help with what data is accessible because
that will provide a responsible party for making the data that should be
available and ready for use. Not all data will be available for consumption
for data integrations, but as previously discussed, there are steps surrounding
metadata information to explain what the data is and what workflows it

01-ch01.indd 11 18/09/15 12:04 PM

 12 Oracle Data Integration: Tool for Harnessing Data

ORACLE FLUFF / Oracle Data Integration: Tool for Harnessing Data / Malcher / 165-2 / Chapter 1

came from. When planning an application or data system for integrations,
the company must build in APIs and other ways to use the data. Also,
communication with other teams is necessary for understanding these pieces
and learning what the other teams want. You can communicate what is being
made available and how to use the data through the workflows. Technology
talking with the business will drive the integrations together. These discussions
drive the flow of the data and get the necessary data available. Deciding
together what data means and working through the needs is definitely a better
way to get the right tools in place. This also sets the direction for data quality,
reporting, and successful data integrations.

The timing of the delivery of the data might be another area where the
business wants something that might not be possible technically. There might
be different understandings of what the timing of the data delivery is. If the
data is only delivered from an external source on a daily or weekly basis, how
does that change the timing of the data integration? The timing might change

FIGURE 1-2. Decisions for data integrations

Consolidated data
store or federated

Data quality/
cleansing tool

ETL/integration tools

Data validations

Data owner and
technology owner

Data available for
integrations

Data needed for
application

Timing of the data

01-ch01.indd 12 18/09/15 12:04 PM

 Chapter 1: Data Integrations Overview 13

ORACLE FLUFF / Oracle Data Integration: Tool for Harnessing Data / Malcher / 165-2 / Chapter 1

based on when data is available and usable. Real-time data might not even
be possible because of workflow processes. If manual checks and processes
are in place, these need to be reviewed so they can be automated before
data can even be expected any earlier. This can be included as part of the
metadata and definitions surrounding the data for timing and details.

Once it is decided what data is needed, the appropriate teams need to
be made aware of its timing and what data is available; then the data can
be loaded into the consolidated data store or data warehouse. If a federated
system is being used, the data can be placed in different areas to be pulled
together with processes.

The data can be cleansed at this point. The cleansing of the data will
depend on the rules and business logic surrounding it. Data cleansing is
discussed more in Chapter 7. At this stage, the data is either corrected or
completed, and can now be used for ETL processing or for data integrations.

Data validation is an area that is significant for the entire process because
it determines if the data that is delivered is what was expected. Testing against
the data will verify that the workflows are working and that the data is defined
properly. Data validation is an on-going procedure to confirm several steps
in the overall process. Not only does it confirm that the data integrations
are working properly, but it also confirms the steps to get to the integrations.
There should be checks along the way for data validation, especially when
data quality steps and master data management are used. The business rules
should be verified against this, and if changes need to be made, the process
can circle back through the workflow to validate the data and the changes.

Decisions concerning data integrations start out with communication and
having the data owner be responsible for the data. Understanding what the data
is currently being used for and the intent of the data will then allow the process
for the data validations and data integrations to be designed and created.

Tools for Harnessing Data
Data integrations are more than just technology and mappings of data in a
database or environment. There is obviously value in incorporating the data
into a common source for analysis. Process work and decisions need to
be made with the data owner and applications owners about the data and
how to integrate it. Even though some of this process is just data owners
discussing the data, there are reasons to pull in tools to make the other work
flows with data integrations consistent and repeatable.

01-ch01.indd 13 18/09/15 12:04 PM

 14 Oracle Data Integration: Tool for Harnessing Data

ORACLE FLUFF / Oracle Data Integration: Tool for Harnessing Data / Malcher / 165-2 / Chapter 1

Tools such as Oracle Data Integrator and GoldenGate can help with
integrations and migrations. In addition, they help automate and track
information concerning what has been done and business rules. Oracle Data
Integrator is discussed more in Chapter 4. It can be used to set up mappings
and business rules and to run through data integrations and data validations.

GoldenGate is for replication and is also discussed in Chapter 4, which
provides you with guidance on how to use GoldenGate for data migrations
and data integrations. Thinking of replication as part of a data integration
strategy is not always intuitive, but using it to provide the source of data in
another system and keeping it synchronized without manual intervention is
critical for the right data to be replicated over.

Other tools such as SQL*Plus, database features such as materialized
views, and external tables can also used for integrating the data. Whether
joining tables together or loading an external source through stored
procedures, relational databases provide solutions for integrating data. Even
though the sources might not be in relational databases, extensions for
databases can be used to combine the data in a view or to load the data
into a data store. Using features from the database allows for automation and
data checking. You’ll find more of a discussion about using queries and these
features in Chapters 2 and 3.

The database is a powerful tool, for both structured and unstructured
data. Storing and integrating data can be part of the design of the application,
which then also provides a way to allow others to access it. The security
around data integration can match that of the database as well.

The tools are key to managing and implementing effective data integrations.
They provide a way to automate, test, and track what is being done. Integrations
are already difficult enough without the tools to maintain the process. The rest
of the book will discuss in more detail how to use these tools effectively to have
a system for managing data integrations.

Summary
Data used for analytics and reporting is very valuable to companies. This
data can give a company a competitive advantage and allow for more
efficiencies in improving technology processes and providing cost savings.
Combining systems internally as well as with external sources of data can
be a very involved effort. A workflow process and checks and validations
need to be built in. Applications should be designed with data integrations
in mind by providing APIs and other ways to access their data.

01-ch01.indd 14 18/09/15 12:04 PM

 Chapter 1: Data Integrations Overview 15

ORACLE FLUFF / Oracle Data Integration: Tool for Harnessing Data / Malcher / 165-2 / Chapter 1

There is no easy way to provide all the data integrations needed. The data
needs to be reviewed for quality, and it doesn’t work without data owners,
governance, and communication. There is not always a technology or tool
that can help provide the solution needed. Rather, a decision needs to be
made about what data is needed and what that data means.

Questions need to be asked—questions that drive the analytics in figuring
out what is needed to move the business forward, provide the right solutions
for customers, and result in a competitive edge. Data that is pulled from the
various available sources, maintained in a secure system, and available at the
right time for those who need it can be used to answer these questions. Tools
to help harness the data are available, and the combination of these tools with
business processes and workflows will provide the data integrations.

01-ch01.indd 15 18/09/15 12:04 PM

CHAPTER
1

Introduction

2 Data Visualization for Oracle Business Intelligence 11g

“I see what you mean.” We understand and interpret the world through our sense of
vision. If we hope to share understanding in large organizations, we have to find
ways to communicate a consistent, coherent message to hundreds or even
thousands of individuals across large distances, time zones, and even cultures. The
fastest and most effective way to do this is through the presentation of data-driven
insights displayed as graphs, tables, maps, simple statements, and patterned visuals.
Business intelligence dashboards and reports are exactly this—attempts at visual
communication. If we are to communicate effectively, however, we must pay close
attention to the visuals we present to each other.

About Oracle Business Intelligence 11g
Oracle Business Intelligence 11g is one of the most capable and comprehensive
business intelligence platforms in the marketplace. The average user size for an OBI
11g implementation is more than 2,000 users. These are very large, very complex
implementations. Building an OBIEE implementation is much like constructing a
40-story office building for several thousand employees. Many of the tools, techniques,
and data structures are necessarily geared to a very large scale. In contrast, many
smaller business intelligence systems operate at a decidedly smaller scale. This is
particularly important to the discussion of data visualization, or, if you prefer,
design. The approach one takes to designing a functional modern skyscraper and
making it “beautiful” is somewhat different in terms of the materials, tools, and
techniques that are used when contrasted with designing a modern house and
making it beautiful. Much of the “beauty” that lies in a modern office building exists
in the functional environment of moving people physically through the structure and
providing them expected services (such as plumbing, heat, air, light, and so on).
There is a fundamental difference between designing something practical that is
expected to be used simultaneously by thousands of people and designing
something customized for a single family.

Business Intelligence System Goals
One of the most important attributes of a large enterprise business intelligence
system is its ability to drive a common understanding of an organization’s business
situation. This situation can be characterized differently. We often organize analysis
in three ways:

 ■ Position analysis looks at the “state” of the organization at a point in time.
You can think of it as a “snapshot.” That snapshot can use a “wide-angle”
lens and capture a very broad landscape from great distances or heights, or
it can be highly focused and extremely detailed.

Chapter 1: Introduction 3

 ■ Performance analysis characterizes what has happened over a period time,
with specific attention paid to the end position. This typically involves
summaries and “slices and dices” of categorized information.

 ■ Flow analysis evaluates a particular type of data or account and how
additions and subtractions to it change over a period of time. Although most
people are familiar with (or have heard of) cash flow, there are several other
types of flow, such as inventory flow, customer flow, data flow, and so on.

There are almost always multiple ways to visualize data, just as there are
multiple ways to characterize analysis. There is not a “defined hierarchy” of value in
which we can say “this is better than that, which is better than the other.” There are
always multiple perspectives and methodologies, and they all have both advantages
and disadvantages.

NOTE
We will stay focused on the topic of data
visualization and not address the inner workings
of OBIEE software and the complexities of its
environment. For instruction on how the software
works, several excellent titles on Oracle Business
Intelligence are available—in particular the Oracle
Press book Oracle Business Intelligence 11g
Developers Guide by Mark Rittman.

Understanding visual perception and the representation of quantitative
information is a life-long study, and far more content has been collected on these
subjects than can be presented in this book. Reports, dashboards, and interactive BI
displays all share the same issues of the most optimal way to present information so
that it informs users and supports decision making. The need has never been greater
to translate vast amounts of data into information that provides evidence for choices
between alternative actions and promotes a shared understanding of business
situations and situational dynamics.

This brief overview highlights three key concepts:

 ■ BI reports and dashboards should be viewed primarily as communication
devices, and both the principles of human cognition and the needs of the
individual user should help guide their proper use.

 ■ BI reports and dashboards are used either in the exploration of data or in the
explanation of data.

 ■ It’s much easier to misuse BI tools than to use them well.

4 Data Visualization for Oracle Business Intelligence 11g

Humans Evolved to Sense the World,
Not to “Do Numbers”
Computers are very powerful tools for manipulating large sets of data and
performing all kinds of mathematical operations, including aggregation, division,
correlation, regression, K-means attribute clustering, and Markov Logic Network
construction. However, it turns out that as human beings, we’re not terribly good at
seeing objects and translating them into numbers. Indeed, once there are more than
about seven of something, we have a hard time counting exactly how many there
are at a glance, and we settle for knowing that there are “a whole bunch.”

We’re even worse at visualizing basic mathematical operations such as addition,
multiplication, and division. Visualizing complex mathematics takes a tremendous
amount of time and practice, and like juggling while riding a unicycle, the average
person can’t do it easily. We humans are good, however, at other things, such as
finding patterns in raw visual data and constructing three-dimensional schemas; we
dynamically interpret colors and light levels and the size and angle relationship of
lines. We’re good at understanding moving objects and motion in general; we’re
good at navigating landscapes; we’re superb at recognizing patterns. In fact, we’re
so good at recognizing patterns that we insist on seeing them even when they’re not
there, and we often refuse to acknowledge a new pattern that violates an existing
pattern. Our brains are optimized for helping us survive in the wild, but not for
deciphering BI dashboards and reports.

We all know that BI systems provide value to organizations only when they are
used. Calvin Mooers coined his famous Mooers’ Law and its corollary in 1959:

An information retrieval system will tend not to be used whenever it is more
painful and troublesome for a customer to have information than for him not
to have it.

Where an information retrieval system tends not to be used, a more capable
information retrieval system may tend to be used even less.

This reminds us that there may be a natural resistance to using BI systems in
many situations. BI systems may point out situations that managers don’t want to
address. Compounding this, when BI systems poorly present or distort data, they
ultimately lead to misuse, mistrust, or abandonment of the system. Proper
visualizations and data presentation lead to business insights and build trust in the
system. As executives and managers begin to rely on them, they improve their
decision-making abilities. Effective BI interfaces also build a more coherent and
consistent view of the business and its operational environment.

Chapter 1: Introduction 5

Basic Principles of BI Dashboards
The effective implementation of BI systems requires both knowing the basic
principles of data communication and thinking critically about who is using a BI
system, how they are using it, and what their needs and goals are. In his seminal
work, The Visual Display of Quantitative Information, Edward Tufte emphasizes five
key principles:

 ■ Above all else, show the data.

 ■ Maximize the data-ink ratio.

 ■ Erase non-data-ink.

 ■ Erase redundant data-ink.

 ■ Revise and edit.

If Tufte’s advice is to be followed, only information that is absolutely necessary
for the contextual understanding of the data will be depicted. The general rule for
BI displays is “less is more.” Eliminate as much visual clutter as possible and let the
data present itself as simply as possible. Drop shadows, 3-D effects, and extra
graphic elements should be avoided because they draw attention away from the
data. The purpose of business intelligence systems is to relate a clear message about
data that is easily understood and interpreted consistently across the highest
percentage of users. It is not about entertainment or visual interest for the sake of
decoration. Designers of business intelligence reports, graphs, and dashboards
should approach data visualization the way Strunk and White approached writing in
The Elements of Style, by stating their case with “cleanliness, accuracy, and brevity.”

Many of the built-in data-visualization tools such as graphs suffered as
computers became more powerful and additional “visual effects” were added—not
for the sake of communicating a message more effectively, but rather for the sake of
“eye candy” or simply because the effects had become possible. Software designers
forget that data visualization is a representation or a visual metaphor, and the
emphasis should be on making it as easy as possible for people to interpret and
understand the information consistently and accurately. Instead, they get sidetracked
by trying to represent physical objects, by replicating cockpits and physical
dashboards designed for very different purposes, such as flying a plane, and by
adding unnecessary design elements unrelated to analytic communication needs.
The best example of this is the use of three-dimensional renderings of pie charts, bar
graphs, and line graphs. Three-dimensional renderings do not add any quantitative
content that is not present in two-dimensional renderings, and they misrepresent
and distort values in order to add the illusion of depth. Software designers contribute
to this problem by showcasing new features in a product that implementers then
copy in an attempt to appear “fresh” or “cool.”

6 Data Visualization for Oracle Business Intelligence 11g

Two books in particular offer clear and accessible information on human
cognition and visual processing: Visual Intelligence: How We Create What We
See, by Donald Hoffman, and Information Visualization: Perception for Design,
by Colin Ware. These works provide the scientific justification for the summary
statements in this book.

Every schoolchild is exposed to optical illusions and understands that magicians
trick us. However, adults (particularly in large organizations) sometime forget that
the presentation of information must be designed carefully according to the way it is
perceived. This involvement in and active guidance of the visualization process is
sometimes less than ideal. Too many people will simply accept the system defaults
set at the time of installation, but these are seldom reflective of fundamental data
visualization best practices. Of course, this does beg the question of whether an
organization should set system defaults and establish an organizational style guide
so that those who are less inclined to edit and improve the presentation or who are
simply in a hurry do not produce poor results. This important topic is addressed
more fully in Chapter 12.

BI Systems Need Training
BI implementations typically require tremendous time and money, but also offer the
potential for significant returns in comparison with the investment in developing and
deploying the system. Just as most developers benefit tremendously from training,
not only in the functional aspects of software systems (“this button does that”) but
also in basic system architecture strategy and data flows, users become far more
effective in reading and understanding a BI system when they are shown both the
basics of “how” and “why.”

Most executives and managers have not had training in visualizing data, and
many may also have not had training in analysis techniques and are therefore
unlikely to do either properly by chance. The most successful BI implementations
“finish the project” by including a training budget that is not spent within a
compressed amount of time at the end of implementation when everyone is
exhausted. Rather, a relatively modest portion of the total project budget should
be allocated to training and workshops and should be spread over the first year of
implementation. A series of classes on visualization and data analysis with executive
users in combination with follow-up sessions (often one-on-one with highly placed
executives) reinforce the information and ensure that the BI system is fully leveraged
by the organization. What people can learn in initial training is limited because they
can absorb only so much information at a time, so these follow-up sessions allow
those who will rely on the BI system to expand their use of it more completely. As
they gain experience, they are able to learn more and leverage the tools in a more
sophisticated and complete manner.

Chapter 1: Introduction 7

Dashboard Best Practices
What is the most important part of your dashboard? If you want to draw attention to
certain areas of your dashboard, you need to know what draws the eye. The three
most powerful ways to draw attention are motion, color, and alignment/position.

Motion Demands Attention and Cannot Be Ignored
Motion draws the human eye more effectively than size, shape, color, pattern, or
any other visual characteristic. It is now possible in many dashboard systems to
embed scrolling messages and incorporate moving displays of data. These displays
will command attention, and if the user requires constant monitoring of changing
data, such displays can be extremely effective. However, these displays can also be
extremely annoying. Using motion can be distracting and often calls attention away
from other important features of the dashboard interface. Make certain that motion
is used sparingly so that the dashboard doesn’t become distracting and annoying to
the user community.

Color Is Powerful
Color is a powerful visual clue and should be used consciously and sparingly.
Colors will stand out immediately against a plain background but can easily be
missed when bright and overly garish colors dominate the screen. The overreliance
on bright colors is a major drawback of many BI dashboards and reports. Bright
colors should only be used in exceptional situations to call attention to unusual
circumstances.

Keep in mind that approximately 10 percent of men and 1 to 2 percent of
women have some form of color blindness. Red/green is the most common form of
color blindness. Therefore, designs requiring the distinction between red and green
are best avoided for general use. Also, the more color is used, the less effective it is.
Soft, muted colors are recommended for the vast majority of visualizations. The
online tool ColorBrewer 2.0 (colorbrewer2.org) offers several selections of color
palettes that are professionally designed. Although ColorBrewer was designed with
map interfaces in mind, its color palettes are also good for most dashboard designs.
See Chapter 11 for more information about color choices.

Alignment and Position
Humans are relatively good at comparing and seeing alignment (or lack thereof),
which is why we’re so quick to understand and interpret basic bar graphs. People
can immediately see fine distinctions between adjacent bars and whether they’re
higher or lower. We tend to form patterns so that we see “wholes” before we see

http://colorbrewer2.org

8 Data Visualization for Oracle Business Intelligence 11g

“parts.” Most people using business dashboards read from left to right and from top
to bottom, so choosing where you place things and how you organize your overall
layout is very important.

As good as we are at seeing alignment, we’re actually not so good at judging
relative sizes. If you want people to see that something is bigger than something else,
it has to be significantly bigger. Size can indicate importance on dashboards, but
only in the sense that “this is excessively, unusually large so that you’ll look at it.”

A Little Bit about Tables
When precise values are required, it’s generally better to show numbers in text
rather than as a graph or some other complex visualization. Eliminate grid lines in
tables or render them in a light gray. Basic tables are best used for data lookup, not
for data comparison. Other visualizations, including charts and graphs, are useful in
comparisons and pattern recognition.

Most tables can be immediately improved through the removal of unnecessary
gridlines. When tables were hand-drawn, gridlines enabled people to keep their
columns and rows straight. If tables are properly designed, gridlines are generally
unnecessary. Place related information in close proximity and provide space
between unrelated data. This will help the user understand the layout of tables more
than trying to separate information through the use of lines. It can also be effective
to use highly contrasted display styles with different tables to help differentiate
between various data sets. One of the real strengths of OBIEE is its ability to
combine data from different sources for simultaneous presentation. One of the most
basic methods for communicating “hey, we want you to see these data sets at the
same time, but you should be aware that they are different” is to use different
formatting and styles for them. Of course, this only works if you are otherwise
consistent in your use of formatting and styles. Differences should always be a
conscious choice to communicate to the audience, not a result of haphazard
development or design.

Although massive tables can be displayed, requiring users to scroll excessively
should be avoided. If scrolling is unavoidable, make sure the titles and headers are
locked so that users can immediately see what an entry is associated with. Many
tables suffer from the display of too much detail. Particularly for budgets and
forecasts, where future values are estimates, excessive detail not only clutters the
interface, it implies a level of precision that does not exist.

Conditional formatting asks the system to apply a format such as a background
color to a table cell based on the results. This can vastly improve the user’s ability to
recognize a significant value because color draws the eye very effectively. However,
a screen of blaring colors does little to impart meaning. The sparing use of soft
colors can more easily attract attention to a particular value than can a screen of

Chapter 1: Introduction 9

bright colors. Conditional formatting is especially powerful for data exploration
when users are looking for anomalies or for patterns in the data. Regular reports
can often be improved by removing colors that do not highlight extraordinary
information or are not communicating a pattern directly (as they are in “heat map”
styled tables). It is best to avoid putting any text in color because colored text is
more difficult to read.

 We often sees dashboards with a large selection of prompts where users can
assemble very large tables containing dozens if not hundreds of columns. Although
the desire for some executives and managers to “have everything” available for
inclusion on a dashboard is understandable, organizations should not encourage
these “one table to rule them all” strategies. Every element (table, graph, text, icon,
and so on) that is placed on a business intelligence dashboard should have a
primary purpose and then be designed to best accomplish that purpose. Broadly
speaking, dashboard prompts and selection mechanisms should not function as
unlimited query design tools. Users who want to perform ad hoc analysis on large,
complex data sets should generally use OBIEE’s “Analyses” interface (also known as
“Answers”) and learn how to appropriately filter and form their queries. Of course,
exceptions can typically be made for highly placed executives who lack an interest
in learning how to create and edit their own analyses but still possess a strong desire
to define large tables of numbers.

Chapter 2 covers these points in greater depth and gives other tips specifically
on using tables.

Background Thoughts on Graphs
When we design a graph, we have to carefully think about what it is we want to
convey. Thoughtful consideration of choices between alternatives is the key to
designing effective graphs. All graphs have a primary message or purpose.
Sometimes that message is determined in advance, and the graph is designed to
communicate that primary message to a broad audience. Sometimes graphs do not
have a predetermined message, but rather are designed to uncover or reveal patterns
and relationships in data there were previously unknown. It should be noted that
data analysis and perception are individual activities, like reading a book, and are
not a shared experience such as attending a concert. Although some may argue that
the search for new insights is the primary purpose of business intelligence systems,
for many large organizations the primary value of business intelligence systems lies
in the creation of a shared understanding of business situations and dynamics and
fostering a sense of strategic coherence often is difficult if not impossible without a
shared foundational view of organizational data. These shared and common
presentations of business information should be designed to present an objective,
agnostic view of business situations.

10 Data Visualization for Oracle Business Intelligence 11g

A carefully designed visual presentation of a major point does not mean the
view is distorted or biased. To the contrary, visualizations have to be designed
carefully in order to avoid bias, distortion, and confusion arising from inconsistent
interpretations. Indeed, the worst kinds of distortions are those unintentional or
unconscious ones that arise because of a lack of care in the design process. Just as
someone needs skill and practice to prepare excellent-quality meals, conscious
decisions regarding details are necessary to prepare excellent data visualizations.
Although it’s possible to get lucky and fix something tasty for a big crowd without
much prep, making carefully considered decisions each step of the way greatly
increases the chance for success.

Data Visualization Graph Views
There are four common data visualization graph views:

 ■ Line graphs Line graphs are best used to depict a pattern over a continuous
range (such as time). Unlike bar graphs, line graphs can be valued within
a range to highlight more granular detail without distorting the meaning of
the chart. Any time a different data range is used, it should clearly marked.
Line graphs should maintain a rectangular shape (roughly according to the
Golden Proportion, or approximately 5:8). If the graph is excessively tall and

Organizational Dashboards Typically Feature Explanation
Views, Whereas Individual or Departmental Dashboards
Typically Feature Exploration Views
Exploration involves individuals or small teams discovering new, previously
unknown or unrecognized insights. Think of exploration as a process of
“finding.” Newly found insights can often inform a decision that is taken by
the discoverer, but often these findings must be shared with others in the
organization who are also involved in making decisions and would benefit
from the newly discovered information. Explanation is communicating a
common message to a group or organization. This ability to accurately convey
information or evidence to a large, diverse group of people in an organization
helps build coherence in decision making. Think of explanation as a process
of “communicating.” Insights discovered during exploration need to be shared
in a consistent, effective manner. Dashboards designed for exploration are
often necessarily different than dashboards designed for explanation.

Chapter 1: Introduction 11

narrow, the data will show an excessive amount of change. If the graph is
short and wide, the change will be minimized.

 ■ Bar graphs Bar graphs depict the value of nominal data. Bar graphs
should start with zero and use a clear scale. Bar graphs are often used for
comparison of the value of data items in a group with one another. Bars
should be depicted as two-dimensional objects.

 ■ Pie graphs Pie graphs are used for the comparison of the size of
individual data items in a set with the size of the whole set (most typically
as percentages totaling 100 percent). Pie graphs are not effective when
too many items are included (more than seven or eight) and are best
used for approximate relationships. Data visualization guru Stephen Few
recommends avoiding the use of pie charts altogether. Pie graphs should
never be depicted as three-dimensional objects, because the relative size of
the pieces of a pie are distorted to achieve the illusion of perspective.

 ■ Scatter plots Scatter plots depict combinations of two measurements—
one on the x-axis and one on the y-axis. They are most useful for visually
displaying the relationship between those two measurements. Scatter plots
can represent hundreds of individual data points and are useful for seeing
overall patterns in the comparison of two variables.

Chapter 3 covers these points in greater depth and gives other tips specifically
on using graphs.

Map Views Communicate Effectively
The new inclusion of map views as a native view type in OBI 11g adds greater value
than almost any other addition. People intuitively recognize and know how to
navigate landscapes and easily make the abstraction to geographical representations
of location. Spatial representations of data make sense to most people and provide
an extremely dense visualization. The interactive capabilities of maps further
promote the involvement of users and offer an ideal interface for master detail
linking and other interaction effects.

Chapter 4 covers these points in greater depth and gives other tips specifically
on using maps.

Dashboard Design Examples
Let’s now look at some of those general principles in a sample dashboard. Think of
this as a “sneak preview” of what lies ahead in other chapters.

12 Data Visualization for Oracle Business Intelligence 11g

Oracle’s OBIEE SampleApp
Throughout this book we will be using Oracle’s OBI SampleApp Virtual Machine
as a source for information and inspiration. Most of the examples are pulled
from SampleApp V406. You can download the SampleApp virtual machine at the
SampleApp home page at:

http://www.oracle.com/technetwork/middleware/bi-foundation/obiee-
samples-167534.html

The OBIEE SampleApp is a standalone VirtualBox VM for creating a comprehensive
collection of examples and integrations designed to demonstrate Oracle BI capabilities
and product integrations.

The Sample Dashboard Is a Good Start
Let’s look at the 11.10 Flights Delay overview dashboard page, pictured in Figure 1-1,
from Oracle’s SampleApp V406. This dashboard has several attributes that make it a

FIGURE 1-1. The Flights Delay overview dashboard from Oracle’s SampleApp V406

http://www.oracle.com/technetwork/middleware/bi-foundation/obiee-samples-167534.html
http://www.oracle.com/technetwork/middleware/bi-foundation/obiee-samples-167534.html

Chapter 1: Introduction 13

significant improvement over the typical dashboard of large tables seen every day in
large corporations and government agencies. After we review some of the key
features of this dashboard, we’ll look at some suggested improvements and a slightly
different version that should set the stage for the rest of the book.

The Flights Delay dashboard summarizes and presents publically available
information regarding flight departure and arrival information for several years.
Information regarding delays and their causes is also included.

The Flights Delay overview dashboard has more visuals than tables. Typically, a
minimum of 60 percent of the dashboard should be composed of graph views rather
than table views. The ratio of three graphs to one table is about right. The prompts
are organized on the leftmost column. Placing the prompts in that position or along
the top of the dashboard provides a consistent location for users to easily find them,
and they do not move depending on the content presented in the dashboard (OBIEE
dynamically adjusts the position of content based on the data returned).

At the top-left corner, you can see a small two-cell table and a small summary
bar chart underneath it, as shown in Figure 1-2. This “contextual” information
regarding the current data selections and what is being represented in the table and
graph views is valuable to users. The raw numbers tell the user that out of the
6,235,242 flights in the data set, only 3,709,454 are being reported. This table is
actually created via a narrative view. Small tables are typically more useful than large
tables. One of the most common data visualization “mistakes” is an overreliance on
big tables. The meaning and purpose of this table is clear, and it’s extremely effective.
The small bar chart presents the same information, but allows the user to perceive at
a glance how many of the flights are being represented by the current data selection.
The bar chart and the table are repeated on several pages of the dashboard and offer
consistent contextual information about more detailed and involved views.

FIGURE 1-2. Small tables and graphs are big communicators.

All four featured views are strong visualizations. The pivot table features yellow
and red conditionally formatted cells calling attention to the results. The Line and
Bar Combo graph utilizes an indexed measure, ensuring a normalized presentation
of the number of flights for a hierarchy of airports (displayed as a slider prompt with
animation). Map views are always a preferred methodology for displaying data that
has a geographical component. Scatter plots (particularly when they employ
background data range bars, as this one does) can show the relationship for
hundreds or even thousands of individual data points across two dimensions.

14 Data Visualization for Oracle Business Intelligence 11g

Improving a Dashboard from SampleApp
Although we are in deep admiration of the Flights Delay overview dashboard, a few
visualization “tweaks” can be made that can strengthen it even more (see Figure 1-3).
This discussion will preview some of the topics we delve into later in this book.

FIGURE 1-3. The revised Flights Delay overview dashboard

(1)

(2)

(2)

(6)

(5)
(3)

(4)
(6)

(10)

(7)

(8)

(9)

(9)

(9)

Several changes are immediately apparent. The first is the placement of the map
in the upper-left quadrant (1). Maps communicate data faster and more intuitively
than any other visualization method. In the revised dashboard, the map is placed in
the most visually dominant space on the dashboard and the pivot table is moved
below it. Placing maps in the upper-left position and tables toward the bottom (and
right) of dashboards is a preferred arrangement for the following reasons:

 ■ Tables are ideal for looking up precise values and act in support of overall
conclusions, which are more succinctly communicated in maps and graphs.

 ■ Graph views show patterns and typically have a main point. Graphs better
summarize a major insight than do tables and deserve a more prominent
placement.

Chapter 1: Introduction 15

 ■ Tables and pivot tables can often be expanded both horizontally and
vertically in OBIEE dashboards and affect other views below and to the left
of the table.

Specifically in the map, notice that the color ramps have been changed in the
revised dashboard (2). In the original, the color-fill for the region started with a dark
blue for the fewest number of flights and progressed to a light blue for the highest
number of flights. However, it is more intuitive to use the light blue to reflect fewer
flights and the dark blue to reflect more flights. Additionally, the color ramp
progression for the variable-shaped circles is changed to a “sequential” color
scheme that more accurately reflects progression. (Throughout the book, Dr. Cynthia
Brewer’s Colorbrewer2.org website is used to specify preferred color schemes for
data visualization.)

The grid lines in the pivot table have been changed to a less intrusive white color
(3). (Note that grid lines can often be eliminated completely.) Also, spaces or
“padding” was added to the columns (4) to help organize the data and make the
table more readable. In addition, the column headers were aligned to the right for
numeric columns and to the left for text columns (5). Note that the yellow and red
conditional formatting (6) for cells exceeding the threshold value has been retained
because the information is important and deserves to be so visually prominent.
Indeed, it could be argued that the conditional formatting is more pronounced in
the revised dashboard than in the original, despite the less prominent placement,
simply because there is less saturated color in the revised dashboard and therefore
the yellow and red cells stand out more.

The scale of the Line Bar Combo graph was changed to be exactly 100 points for
the indexed value, and the scale is shown (7). Also, a scale marker was added at an
index value of 50% for context purposes (8).

Explanatory text was added to the Scatter Plot graph to indicate that a Log/Log
scale has been used (9). Although the relationship between the variables is more
perceptible with the Log/Log scale, its use should generally be avoided for
dashboards intended for a broad, general audience, and it should always be labeled
specifically when it is used.

The column structure in the dashboard layout has been changed from two
columns (one for prompts and one for visualizations) to three columns (10). The
visualizations are organized into Flight Delay Performance by Geography and Late
Flight Trends. Aligning the visualizations and separating the columns with a light
rule better organizes the dashboard and makes it easier to see the relationships
between the visualizations. There are other slight “tweaks” that have been made,
and there is no doubt that plenty of reasonable edits remain.

Tradeoffs are always involved in making choices when you’re designing
visualizations and dashboards. One of the key decisions that must be made is to
determine how much time will be invested in editing and tweaking visualizations

http://Colorbrewer2.org

16 Data Visualization for Oracle Business Intelligence 11g

and dashboards. The cost in terms of time must be balanced against the return of
better understanding and improved consistency in interpretation. This is covered in
more depth in Chapter 7. However, many organizations are often too quick to
accept the default settings and therefore suffer from having less optimal
visualizations for years.

Where the World of Business Intelligence
Data Visualization Is Headed
Many of the latest trends for data visualization overall, and for Oracle specifically,
mirror the discussion in the earlier part of this chapter. Two trends in particular are
the use of a cleaner look and the adaption of a common “grammar of graphics”
methodology.

There is a strong movement toward a “cleaner” interface with fewer visual
gimmicks and extraneous graphics. As of the writing of this chapter, Oracle’s latest
“skin” release is called Skyros (named after the Greek island). Here is a quote from
the Skyros release document:

“Skyros…embodies a fresh, lighter weight and cleaner appearance…. Specific
design changes includes a focus on current UI visual design trends, such as a
flatter, cleaner display. It uses light and/or white color themes, with a few
touches of well-placed color. In addition reduced use of gradients and borders
replaces background images, enhancing the lighter weight feel.”

This fits extremely well with a strategy of deemphasizing the use of gradients,
3-D effects, and bright colors in data visualization graphs. The sparing use of color
will make its placement more important and more effective in drawing the eye and
highlighting important evidence and database insights. Even Apple Computers, long
held in high esteem for their sense of design, is abandoning their preference for the
graphic representation of real-life items (called “skeuomorphism”) in favor of a
flatter, cleaner look. This is likely a long-term trend that will continue to see the
emphasis placed on the accurate visual representation of data along with a de-
emphasis on visual decoration and embellishment. One might say that as business
intelligence systems have grown in size and scale, we are moving toward a
“Miesian” aesthetic, where less is more and clean lines and balance are more
treasured than garish flourishes and screams for attention. You can see this Skyros
style reflected in Figure 1-4.

The second major trend is movement toward a “grammar of graphics” approach
to data visualization. We are already seeing some fantastic extensions of OBIEE with
JavaScript, D3, R (ggplot2 package), and other “open” scripting languages. The
primary paradigm is to define objects and attach attributes to them, which includes

Chapter 1: Introduction 17

FIGURE 1-4. Screenshot from Oracle’s press release announcing their new “Skyros”
CSS, which has a cleaner look than the older “FusionFX” style

18 Data Visualization for Oracle Business Intelligence 11g

the maturation of web interfaces toward HTML5 and away from Flash. This
approach deals with graphics more as combinations of components (and structures).
You can think of this as “data poetry,” where structure and syntax (in short,
“composition”) all become essential elements of a thoughtful communication. Just
as the patterns and “rules” of grammar guide how we formulate sentences and
combine and organize them to form larger works, the patterns and rules of graphics
guide the formulation of graphs and visualizations. This is addressed more in
Chapter 5. A finer integration of “grammar of graphics” style methods can be
anticipated in future releases of OBIEE.

Summary
Editing and improving business intelligence visualizations and dashboards takes a
certain amount of time and effort. We should be guided not by “taste” or opinion,
but rather by understanding the fundamentals of human visual perception and
cognition. Our job is to present data accurately and clearly. We must understand
that visualizations, which are presented as communications to broad audiences to
explain certain business situations, are different from exploratory dashboards, which
are designed to reveal previously unknown results to an individual. There is a great
emphasis in many data visualization circles on “discovery,” and several parts of this
book are dedicated to this subject. However, there is also a need to leverage the
power of business intelligence systems and dashboards to communicate a shared,
coherent understanding of business information across large organizations—that is,
to explain organizational position and performance. Much of this book deals with
the strong need to understand the implications of design choices for queries, views,
and dashboards as they relate to communicating to a large, diverse audience.

Oracle-Regular / Oracle SQL Developer Data Modeler for Database Design Mastery / Heli Helskyaho / 009-0
Blind folio: 1

CHAPTER
1

Introducing Database
Design and Oracle SQL

Developer Data Modeler

01-ch01.indd 1 30/03/15 4:09 PM

Oracle-Regular / Oracle SQL Developer Data Modeler for Database Design Mastery / Heli Helskyaho / 009-0

2 Oracle SQL Developer Data Modeler for Database Design Mastery

Database design is the process of producing detailed entity-relationship (ER)
diagrams and data flow diagrams (DFDs) in order to produce the data
definition language (DDL) scripts that will create the objects needed for

the database. Database design consists of requirements analysis, conceptual design,
logical design, physical design, and, depending on who you ask, transaction
design. (This book will not discuss transaction design.) The process is incremental
and iterative, meaning all these phases will be done repeatedly. The backbones of
database design are logic theory and relational theory.

Database design is all about the data, namely, how to save the data and how to
retrieve it. Data integrity and data quality should always be high priorities when
designing a database, and you must consider future needs as well. Even though an
application user interface might change every five to ten years, the database behind
it must continue to perform well for years to come.

The process of database design is changing as application development processes
are getting more agile and iterative. Management demands fast results, so IT projects
must be completed faster than ever before. Database designers often do not have
time to analyze everything well before starting to design, and sometimes systems are
launched into production to be completed later in increments, without having the
analysis completed. In fact, sometimes databases are created with no time spent on
design and with no thought to the principles of relational theory. Even with the world
seemingly getting faster every day, when designing a database, you need to know the
full picture of what the database is for. That is what makes database design difficult.
The only way to survive is to use a tool that meets all of today’s needs, helping you
create databases quickly but with the “big picture” in mind. Without a tool, you
cannot be as agile as needed.

Though I’ve mentioned application development processes, I want to be clear
that database design is not the same as application design. The database should not
be designed as a side product of an application design. When trying to save time
and money, people think they will design only either the ER model or the Unified
Modeling Language (UML) model and then generate the other. Although it is good
they realize they need two models (one for the database and the other for the
application), it is not just a question of which notation to choose; the perspectives
are very different and so are the goals. For example, let’s look at code tables versus
code files. For the application designer, it might be easier to have all the lookup
information in files, but the database designer definitely will want them in tables.
Why? The database person is also in charge of the data integrity, which cannot be
controlled if some of the important data is in files somewhere out of the reach of
the database.

I often hear people arguing about which is better, ER or UML. To me this
question is irrelevant. ER diagrams are for designing databases, and UML is for
designing user interfaces. If you try to design a database with UML, you can get
easily distracted and want to start designing the user interface. My recommendation

01-ch01.indd 2 30/03/15 4:09 PM

Oracle-Regular / Oracle SQL Developer Data Modeler for Database Design Mastery / Heli Helskyaho / 009-0

Chapter 1: Introducing Database Design and Oracle SQL Developer Data Modeler 3

is that while the database designer designs the database, the application designer
designs the application in cooperation with the database designer. And before
the database designer moves to the logical design, the database designer and the
application designer should sit down and compare their models to be sure that they
really have all the requirements implemented in both the designs. There might be
information in the UML model that the ER model does not have or should not
have. For instance, in the UML model, there might be an attribute named AGE, but
in the data model (ER), there might be an attribute called DATE OF BIRTH. There
can also be some technical attributes in the data model that do not need to be in the
UML model. For instance, every table might have the columns Creator, Created_
Date, Modifier, and Modified_Date. The two models (UML and ER) do not have to
be the same and actually rarely are, but creating and maintaining both models will
guarantee a better result. But this is true only if you have a tool for both purposes; if
this work is done without a tool, the dual processes take too much time and money.
You want to use a tool to create designs in cooperation and take advantage of
everybody’s special skills and knowledge.

NOTE
The UML model and the ER model do not need to
be the same and rarely are.

The importance of database design increases on agile projects. In that case, the
process involves not just designing but also finding the right questions to ask and
having pictures (ER models and DFDs) to use when talking to end users. You need as
much information as possible from end users and business owners. You need to
understand the big picture, lest you get a database totally different than you wanted.
It’s as simple as thinking before doing.

It’s important that you understand the main concepts (entities) of the database
and their relationships correctly because it is easy to add entities and attributes later,
but it is not easy to divide them later or correct the relationships modeled wrongly.
Always design the database for the right purpose and model only what is needed,
starting with the most difficult task.

In Figure 1-1, you can see my version of agile database design. It starts with
requirements analysis and finding the main concepts and their relationships. Next
you try to model the whole conceptual model as well as you can. Then you
design the conceptual model for iteration n, making it as detailed as possible;
continue to the logical design of iteration n; and finally move to physical design and
creating the database objects with the DDL scripts. Then you perform the whole
round again for iteration n+1, and so on. The process is the same as it is in other
projects; the only difference in an agile project is that you move from phase to phase
faster, and you design in pieces, rather than as a whole.

01-ch01.indd 3 30/03/15 4:09 PM

Oracle-Regular / Oracle SQL Developer Data Modeler for Database Design Mastery / Heli Helskyaho / 009-0

4 Oracle SQL Developer Data Modeler for Database Design Mastery

If a database will hold valuable data, the database must be designed by
someone who understands how the database works and knows how the data should
be modeled. When designing the database, you may need all different types of
subject-matter experts to give you the information you need to make decisions
about the design. Additionally, if your deadline is tight, you need even more
information to be sure you are making the right decisions; you don’t want to have to
change everything later. Prioritization is important for everybody (even the end
users). Nothing is more stressful than too much work with too little time to do it.
Database design means teamwork, and that’s why you need a tool to do database
design right in today’s environment.

FIGURE 1-1. Agile database design process

Main concepts
and their

relationships (ER)

The whole
conceptual model

for the business
(ER) draft

The conceptual
design for this
increment n

(+ increments n–1)
(ER) �nal

The logical model
for this increment

n
(+ increments n–1)

(logical) �nal

The physical
database for this

increment n
(+ increments n–1)

(physical) �nal

01-ch01.indd 4 30/03/15 4:09 PM

Oracle-Regular / Oracle SQL Developer Data Modeler for Database Design Mastery / Heli Helskyaho / 009-0

Chapter 1: Introducing Database Design and Oracle SQL Developer Data Modeler 5

When selecting the tool for database design, you’ll want one that supports these
features: ER notation, an automatic transformation process from the conceptual
design to the logical design, the ability to work in a multiuser environment, version
control, reporting capabilities, scripts for generating the database objects
automatically (preferably adjustable), and strong documentation tools. It would be a
bonus if the tool also has support for the standardization of naming, processes,
and design rules; the ability to alter scripts for changing the database to be like the
design; and the ability to compare designs to each other and to compare a design to
a database.

What Is Oracle SQL
Developer Data Modeler?
Oracle SQL Developer Data Modeler (referred to as Data Modeler in this book) is a
free tool for designing and documenting databases and data architecture. It supports
not only Oracle databases but also DB2 and Microsoft SQL Server databases and, at
a certain level, any standards-based database that has a Java Database Connectivity
(JDBC) connector. Data Modeler supports all the steps in database design and
includes easy forward and backward engineering. After you have designed your
database and have a physical model for it, you can export the scripts to create
the database objects. Data Modeler also supports different kinds of compares and
multidimensional models. Data Modeler helps you keep your databases
documented and enables you to be agile. The tool is available as a stand-alone
product, but it is also integrated into Oracle SQL Developer, so you can decide
which way is the best for you to use the tool. Installing the tool is simple, and
support is provided by Oracle if you have a database support contract.

Data Modeler offers the following features for database designers:

 ■ Database design tools A collection of metadata about a database
is called a design in Data Modeler. A design consists of the logical
models, multidimensional models, relational models, domains, data type
models, process models, business information, and change requests, as well
as all the objects those models need. Every object (entity, table, diagram,
and so on) is a single Extensible Markup Language (XML) file in a hierarchy
that the tool creates automatically. The design itself is saved with the
extension .dmd, and the .dmd file contains pointers to individual XML files.

 ■ Customization You can tweak Data Modeler to your liking. In Preferences,
you can, for instance, define where to keep your working copy of designs.

 ■ Version control Data Modeler is integrated into a version control tool
called Subversion. This integration allows you to have multiple users

01-ch01.indd 5 30/03/15 4:09 PM

Oracle-Regular / Oracle SQL Developer Data Modeler for Database Design Mastery / Heli Helskyaho / 009-0

6 Oracle SQL Developer Data Modeler for Database Design Mastery

changing the model at the same time. It also gives you version control
functionalities. When working with version control, the latest official version
of your design is always on version control, and the one you are working
with is in your local saved working copy directory.

 ■ Documenting existing databases You can import designs to Data Modeler
from existing databases, from other designing tools (for example, Oracle
Designer or ERwin), or from DDL scripts.

 ■ Reporting capabilities Data Modeler has built-in reporting functionalities,
but you can also create your own reports and templates and use the Search
functionality as a base for a report. It is also possible to use a reporting
repository if you want to have reports across all your designs and use SQL to
query that information. You can also print the design layouts.

 ■ Documentation tools, improving quality and efficency Data Modeler
helps you standardize the design and data documentation in your company.
You can use naming standards, domains, glossaries, and design rules to
achieve better quality in your database design. You can also compare
models and designs to each other, and you can compare a design to a
database. Different compares, transformations, and notations will give you a
more cost-efficient working environment with better quality.

Designing Databases with Oracle
SQL Developer Data Modeler
The database design process when using Data Modeler starts with designing a
logical model. In the logical model, you define entities, attributes, and relationships.
The next step is to create a relational model based on the logical model. You do this
simply by clicking the Engineer To Relational Model icon. When you are done with
the relational model, it is time to create the physical model. You do this simply by
right-clicking Physical Model in the Browser pane and selecting New. When
creating a physical model, you must know what product you will use for your
database (Oracle, SQL Server, or DB2) as well as its version. All the properties for
the physical model depend on the chosen technology. After you have created a
physical model, you should define the properties for the physical objects. After
you’ve done that, you are ready to generate the DDLs (which are the SQL scripts for
creating your database objects). You can create DDLs by selecting File | Export |
DDL File. Then just run these DDLs on your database to create the objects. And all
this can be done in a multiuser environment and while using version control.

01-ch01.indd 6 30/03/15 4:09 PM

Oracle-Regular / Oracle SQL Developer Data Modeler for Database Design Mastery / Heli Helskyaho / 009-0

Chapter 1: Introducing Database Design and Oracle SQL Developer Data Modeler 7

You can also use Data Modeler to document existing databases (Oracle, SQL
Server, DB2). You can reverse engineer the documentation from a data dictionary
or existing DDLs, or you can import it from another design tool (Oracle Designer,
ERwin, or a VAR file). Or, you can combine all these techniques, for example, by
bringing some of the descriptions from another design tool and adding it to the
physical information from the data dictionary. You can find these features by
selecting File | Import.

Since an important part of database design is reporting, you might want to use
Data Modeler to create your own templates and create reports based on those
templates. You can also create a reporting repository; in addition to the templates,
you can use SQL to query the information from there. You can also print the
diagrams or use the powerful search functionality to search the information in
the report.

It is also important to be able to document all the information related to the
database in just one place. In Data Modeler you can document all the information
needed for the database design as well as change requests, business information,
and much more.

Summary
Going through the database design process is vital if you are storing important
data in your database. Database design is the process of producing detailed
entity-relationship diagrams and data flow diagrams to produce the DDL scripts
for creating the objects for the database. Database design consists of requirements
analysis, conceptual design, logical design, physical design, and, depending on
who you ask, transaction design. To be able to design a database, especially in an
agile system, you need Oracle SQL Developer Data Modeler. It is a free tool that
supports all the needs of database designers plus some extra.

01-ch01.indd 7 30/03/15 4:09 PM

	0071824553_Chapter 1
	9780071824606_Web 32
	9780071824606_Web 33
	9780071824606_Web 34
	9780071824606_Web 35
	9780071824606_Web 36
	9780071824606_Web 37
	9780071824606_Web 38
	9780071824606_Web 39
	9780071824606_Web 40
	9780071824606_Web 41
	9780071824606_Web 42
	9780071824606_Web 43
	9780071824606_Web 44
	9780071824606_Web 45
	9780071824606_Web 46
	9780071824606_Web 47
	9780071824606_Web 48
	9780071824606_Web 49
	9780071824606_Web 50
	9780071824606_Web 51
	9780071824606_Web 52
	9780071824606_Web 53
	9780071824606_Web 54
	9780071824606_Web 55

	0071798781_Chapter 3
	9780071798792_Web 86
	9780071798792_Web 87
	9780071798792_Web 88
	9780071798792_Web 89
	9780071798792_Web 90
	9780071798792_Web 91
	9780071798792_Web 92
	9780071798792_Web 93
	9780071798792_Web 94
	9780071798792_Web 95
	9780071798792_Web 96
	9780071798792_Web 97
	9780071798792_Web 98
	9780071798792_Web 99
	9780071798792_Web 100
	9780071798792_Web 101

	0071841652_Chapter 1
	9780071841665_Web 22
	9780071841665_Web 23
	9780071841665_Web 24
	9780071841665_Web 25
	9780071841665_Web 26
	9780071841665_Web 27
	9780071841665_Web 28
	9780071841665_Web 29
	9780071841665_Web 30
	9780071841665_Web 31
	9780071841665_Web 32
	9780071841665_Web 33
	9780071841665_Web 34
	9780071841665_Web 35
	9780071841665_Web 36

	0071837264_Chapter 1
	0071850090_Chapter 1

