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A Note from  
the Authors

We are thrilled to introduce the third edition of our textbook, University Physics. Physics is a thriving science, alive with intellectual challenge 
and presenting innumerable research problems on topics ranging from the largest galaxies to the smallest subatomic particles. Physicists have 
managed to bring understanding, order, consistency, and predictability to our universe and will continue that endeavor into the exciting future.

However, when we open most current introductory physics textbooks, we find that a different story is being told. Physics is painted as a 
completed science in which the major advances happened at the time of Newton, or perhaps early in the 20th century. Only toward the end of 
the standard textbooks is “modern” physics covered, and even that coverage often includes only discoveries made through the 1960s.

Our main motivation in writing this book is to change this perception by weaving exciting, contemporary physics throughout the text. 
Physics is an amazingly dynamic discipline—continuously on the verge of new discoveries and life-changing applications. To help students see 
this, we need to tell the full, absorbing story of our science by integrating contemporary physics into the first-year calculus-based course. Even the 
very first semester offers many opportunities to do this by weaving recent results from nonlinear dynamics, chaos, complexity, and high-energy 
physics research into the introductory curriculum. Because we are actively carrying out research in these fields, we know that many of the cutting-
edge results are accessible in their essence to the first-year student.

Recent results involving renewable energy, the environment, engineering, medicine, and technology show physics as an exciting, 
thriving, and intellectually alive subject motivating students, invigorating classrooms, and making the instructor’s job easier and more 
enjoyable. In particular, we believe that talking about the broad topic of energy provides a great opening gambit to capture students’ 
interest. Concepts of energy sources (fossil, renewable, nuclear, and so 
forth), energy efficiency, energy storage, alternative energy sources, and 
environmental effects of energy supply choices (global warming and ocean 
acidification, for example) are very much accessible on the introductory 
physics level. We find that discussions of energy spark our students’ 
interest like no other current topic, and we have addressed different aspects 
of energy throughout our book.

In addition to being exposed to the exciting world of physics, students 
benefit greatly from gaining the ability to problem solve and think 
logically about a situation. Physics is based on a core set of ideas that is 
fundamental to all of science. We acknowledge this and provide a useful 
problem-solving method (outlined in Chapter 1) which is used throughout 
the entire book. This problem-solving method involves a multistep format 
that we have developed with students in our classes. But mastery of 
concepts also involves actively applying them. To this end, we have asked 
more than a dozen contributors from some of the leading universities across 
the country to share their best work in the end-of-chapter exercises. We are 
particularly proud of approximately 400 multi-version exercises, which 
allow students to address the same problem from different perspectives.

In 2012, the National Research Council published a framework for K-12 science education, which covers the essential science and 
engineering practices, the concepts that have application across fields, and the core ideas in four disciplinary areas (in physics, these are 
matter and its interactions, motion and stability, energy, and waves and their applications in information transfer). We have structured the 
third edition of this textbook to tie the undergraduate physics experience to this framework and have provided concept checks and self-test 
opportunities in each chapter. In the ebook version of this third edition, we are also providing approximately 200 apps that allow the students 
to watch video clips of selected lecture demonstrations, as well as perform interactive physics simulations, which hopefully will lead to deeper 
understanding of physics concepts.

With all of this in mind, along with the desire to write a captivating textbook, we have created what we hope will be a tool to engage 
students’ imaginations and to better prepare them for future courses in their chosen fields (admittedly, hoping we can convert at least a few 
students to physics majors along the way). Having feedback from more than 400 people, including a board of advisors, several contributors, 
manuscript reviewers, and focus group participants, assisted greatly in this enormous undertaking, as did field testing our ideas with more 
than 10,000 students in our introductory physics classes at Michigan State University. We thank you all!

—Wolfgang Bauer and Gary D. Westfall

Malcolm Fife/Getty Images
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How to Use This Book

Problem-Solving Skills: Learning to Think Like a Scientist
Perhaps one of the greatest skills students can take from their physics course is the ability to prob-
lem solve and think critically about a situation. Physics is based on a core set of fundamen-
tal ideas that can be applied to various situations and problems. University Physics by Bauer and 
Westfall acknowledges this and provides a problem-solving method that has been class-tested by 
the authors, which is used throughout the text. The text’s problem-solving method has a multistep 
format.

Problem-Solving Method

Solved Problems
The book’s numbered Solved Problems are fully worked problems, each 
consistently following the seven-step method described in Section 1.5. Each 
Solved Problem begins with the problem statement and then provides a com-
plete solution. The seven-step method is also used in Connect Physics. The 
familiar seven steps are outlined in the guided solutions, with additional help 
where you need it. 

40313.4 Pressure

S O LV E D  P R O B L E M  13.2 Weighing Earth’s Atmosphere

The Earth’s atmosphere is composed (by volume) of 78.08% nitrogen (N2), 20.95% oxygen 
(O2), 0.93% argon (Ar), 0.25% water vapor (H2O), and traces of other gases, most impor-
tantly, carbon dioxide (CO2). The CO2 content of the atmosphere is currently (year 2022) around 
0.042% = 420 ppm (parts per million), but it varies with the seasons by about 6–7 ppm and 
has been rising since the start of the Industrial Revolution, mainly as a result of the burning 
of fossil fuels. Approximately 2 ppm of CO2 are being added to the atmosphere each year.

PROBLEM
What is the mass of the Earth’s atmosphere, and what is the mass of 1 ppm of atmospheric CO2?

SOLUTION
T H I N K  At first glance, this problem seems rather daunting because very little information 
is given. However, we know that the atmospheric pressure is 1.01 · 105 Pa and that pressure 
is force per area.

S K E T C H  The sketch in Figure 13.13 shows a column of air with weight mg above an area 
A of Earth’s surface. This air exerts a pressure, p, on the surface.

R E S E A R C H  We start with the relationship between pressure and force, p = F/A, where the 
area is the surface area of Earth, A = 4R2, and R = 6370 km is the radius of Earth. For the 
force, we can use the atmospheric weight, F = mg, where m is the mass of the atmosphere.

S I M P L I F Y  We combine the equations just mentioned

π
= =p

F

A

mg

R4 2

and solve for the mass of the atmosphere

π
=m

R p

g

4 .
2

C A L C U L AT E  We substitute the numerical values:

m = 4(6.37 ⋅ 106 m)2(1.01 ⋅ 105 Pa)/(9.81 m/s2) = 5.24978 · 1018 kg.

R O U N D  We round to three significant figures and obtain
m = 5.25 ⋅1018 kg.

D O U B L E - C H E C K  In order to obtain the mass of 1 ppm of CO2 in the atmosphere, we have 
to realize that the molar mass of CO2 is 12 + (2⋅16) = 44 g. The average mass of a mole of the 
atmosphere is approximately 0.78(2⋅14) + 0.21(2⋅16) + 0.01(40) = 28.96 g. The mass of  
1 ppm of CO2 in the atmosphere is therefore

= = =−m m10 · 44
28.96

7.97·10 kg 8.0 billion tons.1 ppm CO
6 12

2

Humans add approximately 2 ppm of CO2 to the atmosphere each year by burning fossil fuels, 
which amounts to approximately 16 billion tons of CO2, a scary number. For comparison, the 
combined mass of all 8 billion humans on the planet is approximately 0.5 billion tons. Humans 
add more than 30 times our own weight in carbon dioxide to the atmosphere each year. It is not 
easy to double-check the orders of magnitude for this calculation. However, data published by the 
U.S. Energy Information Administration show that total carbon dioxide emissions from burning 
fossil fuels are currently approximately 30 billion tons per year, higher than our result by a factor 
of 2. Where does the other half of the CO2 go? Mainly, it dissolves in the Earth’s oceans.
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Problem-Solving Guidelines
Located before the end-of-chapter 
exercise sets, Problem-Solving 
Guidelines summarize impor-
tant skills or techniques that can 
help you solve problems related 
to the material in the chapter. 
Acknowledging that physics is 
based on a core set of fundamental 
ideas that can be applied to various 
situations and problems, University 
Physics emphasizes that there is no 
single way to solve every problem 
and helps you think critically about 
the most effective problem-solving 
method before beginning to work on 
a solution.

End-of-Chapter Questions and Exercise Sets
Along with providing problem-solving guidelines, examples, and strategies, University 
Physics also offers a wide variety of end-of-chapter Questions and Exercises. Included in 
each chapter are Multiple-Choice Questions, Conceptual Questions, Exercises (by section), 
Additional Exercises (no section “clue”), and Multi-Version Exercises. One bullet identifies 
slightly more challenging Exercises, and two bullets identify the most challenging Exercises. 

Calculus Primer
Since this course is typically taken in the first year of study at universities, this book assumes 
knowledge of high school physics and mathematics. It is preferable that students have had a 
course in calculus before they start this course, but calculus can also be taken in parallel. To 
facilitate this, the text contains a short calculus primer in an appendix, giving the main results 
of calculus without the rigorous derivations.

  

  

PROBLEM-SOLVING GUIDELINES: NEWTON’S LAWS

Analyzing a situation in terms of forces and motion is 
a vital skill in physics. One of the most important tech-
niques is the proper application of Newton’s laws. The 
following guidelines can help you solve mechanics prob-
lems in terms of Newton’s three laws. These are part of 
the seven-step strategy for solving all types of physics 
problems and are most relevant to the Sketch, Think, and 
Research steps.

1. An overall sketch can help you visualize the situ-
ation and identify the concepts involved, but you also 
need a separate free-body diagram for each object to 
identify which forces act on that particular object and 
no others. Drawing correct free-body diagrams is the 
key to solving all problems in mechanics, whether they 

involve static (nonmoving) objects or kinetic (moving) 
ones. Remember that the 

�
ma from Newton’s Second 

Law should not be included as a force in any free-body 
diagram.

2. Choosing the coordinate system is important—often the 
choice of coordinate system makes the difference between 
very simple equations and very difficult ones. Placing an axis 
along the same direction as an object’s acceleration, if there 
is any, is often very helpful. In a statics problem, orienting an 
axis along a surface, whether horizontal or inclined, is often 
useful. Choosing the most advantageous coordinate system 
is an acquired skill gained through experience as you work 
many problems.

578 Chapter 18 Heat and the First Law of Thermodynamics

E X A M P L E  18.9 Estimate of Earth’s Internal Thermal Energy

Since Earth’s core and mantle are at very high temperatures relative to its surface, there must 
be a lot of thermal energy available inside Earth.

PROBLEM
What is the thermal energy stored in Earth’s interior?

SOLUTION
Obviously, we can make only a rough estimate, because the exact radial temperature profile of 
Earth is not known. Let’s assume an average temperature of 3000 K, which is approximately 
half of the difference between the surface and core temperatures.

The specific heats (see Table 18.1) for the materials in the Earth’s interior range from 
0.45 kJ/(kg K) for iron to 0.92 kJ/(kg K) for rocks in the crust. In order to make our estimate, 
we will use an average value of 0.7 kJ/(kg K). The total mass of Earth is (see Table 12.1) 
5.97 ⋅ 1024 kg.

Inserting the numbers into equation 18.12, we find

Q m c T (6 10 kg)[0.7kJ/(kg K)](3000 K) 10 J.Earth Earth
24 31= ∆ = ⋅ =

Does it matter that some part of Earth’s core is liquid and not solid? Should we account for 
the latent heat of fusion in our estimate? The answer is yes, in principle, but since the latent 
heat of fusion for metals is typically on the order of a few hundred kilojoules per kilogram, it 
would contribute only 10–20% of what the specific heat does in this case. For our order-of-
magnitude estimate, we can safely neglect this contribution.

Examples
Briefer Examples (problem statement and solution only) 
focus on a specific point or concept. The Examples 
also serve as a bridge between fully worked-out Solved 
Problems (with all seven steps) and the homework 
problems.

xv
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What We Will Learn / What We Have Learned
Each chapter of University Physics is orga-
nized like a good research seminar. It was 
once said, “Tell them what you will tell 
them, then tell them, and then tell them what 
you told them!” Each chapter starts with 
What We Will Learn—a quick summary of 
the main points, without any equations. And 
at the end of each chapter, What We Have 
Learned/Exam Study Guide contains key 
concepts, including major equations.

Conceptual Introductions
Conceptual explanations are provided in the text prior to any mathematical explanations, formulas, 
or derivations in order to establish why the concept or quantity is needed, why it is useful, and why 
it must be defined accurately. The authors then move from the conceptual explanation and defini-
tion to a formula and exact terms.

Self-Test Opportunities
In each chapter, a series of questions focus on major concepts 
within the text to encourage students to develop an internal 
dialogue. These questions will help students think critically 
about what they have just read, decide whether they have a 
grasp of the concept, and develop a list of follow-up questions 
to ask in class. The answers to the Self-Tests are found at the 
end of each chapter.

Concept Checks
Concept Checks are designed to be used with 
personal response system technology. They will 
appear in the text so that you may begin contem-
plating the concepts. Answers will only be avail-
able to instructors. 

Building Conceptual Understanding

Chapter Opening Outline
At the beginning of each chapter is an outline presenting the section heads within the chapter. The 
outline also includes the titles of the Examples and Solved Problems found in the chapter. At a 
quick glance, you will know if a desired topic, example, or problem is in the chapter.

683 22.2 Field Lines

 ■ An electric field represents the electric force at 
different points in space. 

 ■ Electric field lines represent the net force vectors 
exerted on a unit positive electric charge. They 
originate on positive charges and terminate on negative 
charges. 

 ■ The electric field of a point charge is radial, 
proportional to the charge, and inversely proportional to 
the square of the distance from the charge. 

 ■ An electric dipole consists of a positive charge and a 
negative charge of equal magnitude. 

 ■ The electric flux is the electric field component normal 
to an area times the area. 

 ■ Gauss’s Law states that the electric flux through a 
closed surface is proportional to the net electric charge 
enclosed within the surface. This law provides simple 
ways to solve seemingly complicated electric field 
problems.

 ■ The electric field inside a conductor is zero. 
 ■ The magnitude of the electric field due to a uniformly 

charged, infinitely long wire varies as the inverse of the 
perpendicular distance from the wire. 

 ■ The electric field due to an infinite sheet of charge does 
not depend on the distance from the sheet. 

 ■ The electric field outside a spherical distribution of 
charge is the same as the field of a point charge with 
the same total charge located at the sphere’s center.

WHAT WE WILL LEARN 

79125.6 Resistors in Parallel

Concept Check 25.8
Three light bulbs are connected in 
series with a battery that delivers a 
constant potential difference, Vemf. 
When a wire is connected across light 
bulb 2 as shown in the figure, light 
bulbs 1 and 3 

a) burn just as brightly as they did 
before the wire was connected. 

b) burn more brightly than they did 
before the wire was connected.

c) burn less brightly than they did 
before the wire was connected. 

d) go out. 

+−

Vemf

1 3

2

146 Chapter 5 Kinetic Energy, Work, and Power

 

 

Self-Test Opportunity 5.3
A block is hanging vertically from a 
spring at the equilibrium displace-
ment. The block is then pulled down 
a bit and released from rest. Draw the 
free-body diagram for the block in 
each of the following cases:

a)  The block is at the equilibrium 
displacement.

b)  The block is at its highest vertical 
point.

c)  The block is at its lowest vertical 
point.

xvi
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Seeing the Big Picture

Contemporary Examples
The authors have included recent physics research results through-
out the text. Results involving renewable energy, the environment, 
aerospace, engineering, medicine, and technology demonstrate that 
physics is an exciting, thriving, and intellectually stimulating field. 
Available in Connect, the student resource center provides a number 
of items to enhance your understanding and help you prepare for lec-
tures, labs, and tests. 

eBook
Linked to multimedia assets—including author videos, applets that 
allow you to explore fundamental physics principles, and images—the 
eBook allows you to take notes, highlight, and even search for specific 
words or phrases. All of the textbook figures, videos, and interac-
tive content are also listed in line and by chapter, so you can navigate 
directly to the resource you need. Links to the eBook are included in 
the online homework and SmartBook 2.0. assignments, so if you are 
having trouble with an exercise or concept, you can navigate directly 
to the relevant portion of the text.

Visual Program
Familiarity with graphics and animation on the Internet and in video 
games has raised the bar for the graphical presentations in textbooks, 
which must now be more sophisticated to excite both students and 
faculty. Here are some of the techniques and ideas implemented in 
University Physics: 

· Line drawings are superimposed on photographs to connect 
sometimes very abstract physics concepts to students’ realities 
and everyday experiences.

· A three-dimensional look for line drawings adds plasticity to the 
presentations. Mathematically accurate graphs and plots were 
created by the authors in software programs such as Mathematica 
and then used by the graphic artists to ensure complete accuracy 
as well as a visually appealing style.

150 Chapter 5 Kinetic Energy, Work, and Power

FIGURE 5.20 Worldwide production of 
electricity as a function of time for different 
power sources. (Data from www.eia.gov/
international/data/world/electricity/)
McGraw Hill
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S O LV E D  P R O B L E M  5.3 Wind Power

The total electrical power consumption of all humans combined is approximately 3 TW 
(3 ⋅ 1012 W), and it is expected to double during the next 15 to 20 years. Around 62% of 
the electricity produced comes from fossil fuels; see Figure 5.20. Since the burning of 
fossil fuels is currently adding more than 20 billion tons of carbon dioxide to Earth’s 
atmosphere per year, it is not clear how much longer this mode of power generation is 
sustainable. Other sources of power, such as wind, have to be considered. Some huge 
wind farms have been constructed (see Figure 5.21), and many more are under develop-
ment. In the year 2000 only 0.2% of global electricity production was due to wind, but 
in 2020 this percentage had increased to approximately 6%.

PROBLEM
How much average power is contained in wind blowing at 10.0 m/s across the rotor of 
a large wind turbine, such as the Enercon E-126, which has a hub height of 135 m and 
a rotor radius of 63 m?

SOLUTION
T H I N K  Since the wind speed is given, we can calculate the kinetic energy of the 
amount of air blowing across the rotor’s surface. If we can calculate how much air 
moves across the rotor per unit of time, then we can calculate the power as the ratio of 
the kinetic energy of the air to the time interval.

S K E T C H  The rotor surface is a circle, and we can assume that the wind blows 
perpendicular to it, because the turbines in wind farms are oriented so that that is the 
case. Indicated in the sketch (Figure 5.22) is the cylindrical volume of air moving across 
the rotor per time interval.

R E S E A R C H  Earlier in this chapter, we learned that the kinetic energy is given by 
E mv1

2
2= ; here, m is the mass of air, and v is the wind speed. A very handy rule of 

thumb is that 1 m3 of air has a mass of 1.20 kg at sea level and room temperature. The 
average power is given by P = W/t, and the work is related to the change in kinetic 

energy through the work–kinetic energy theorem W = K.
We can thus write, for the average power of the wind moving across 

the rotor of the wind turbine,

P
W

t

K

t

mv

t
v

m

t
.

1
2

2
1
2

2( )
=

∆
=

∆

∆
=

∆

∆
=

∆

∆

In the last step, we have assumed that the wind speed is constant and 
does not change.

What is m? We know that density is mass/volume, and so we can 
write m = rV, where r = 1.20 kg/m3 is the air density and V is 
the volume of air moved across the rotor per unit of time. Here V is 
a cylinder with length l = vt and base area A = area of the rotor (see 
Figure 5.22), v is again the wind speed, and the area is the area of a 
circle, A = R2.

FIGURE 5.21 Large-scale wind farm producing power.
Thinkstock/Masterfile/Getty Images
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341 11.2 Examples Involving Static Equilibrium
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FIGURE 11.12  (a) Student standing on a ladder. (b) Force 
vectors superimposed. (c) Free-body diagram of the ladder. 
a-b: W. Bauer and G. D. Westfall
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A unique path for each student
In Connect, instructors can assign an adaptive reading 
experience with SmartBook® 2.0.  Rooted in advanced 
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Digital Resources

Online Resources
A collection of online tools—including photos, artwork, an 
Instructor’s Solutions Manual, and other media—can be accessed 
from the University Physics Connect library. These tools provide 
content for novice and experienced instructors who teach in a vari-
ety of styles. Included in the collection are PowerPoint slides con-
taining full-color digital files of all illustrations in the text, a collec-
tion of digital files of photographs from the text, libraries of all the 
solved problems, examples, tables, and numbered equations from 
the text, and ready-made PowerPoint lecture outlines that include 
art, lecture notes, and additional examples for each section of the 
text. An Instructor’s Solutions Manual with complete worked-out 
solutions to all of the end-of-chapter Questions and Exercises is 
available. The latest research in physics education shows that in-
class use of personal response systems (or “clickers”) improves stu-
dent learning, so a full set of clicker questions based on the Concept 
Checks from the text is available on the companion website.

The Connect library also provides a number of author-provided 
applets to help you visualize physics concepts that are presented 
throughout the book—from vectors and kinematics to quantum and 
nuclear physics. Interactive simulations allow you to simulate real 
experiments, while viewing data in real time, thereby linking con-
cepts and principles you have just learned to real, quantifiable results. 

Student Solutions Manual
The Student Solutions Manual contains answers and worked-out 
solutions to selected end-of-chapter Questions and Exercises (those 
indicated by a blue number). Worked-out solutions for all items in 
Chapters 1 through 13 follow the complete seven-step problem-
solving method introduced in Section 1.5. Chapters 14 through 40 
continue to use the seven-step method for challenging (one bullet) 
and most challenging (two bullet) exercises, but present more abbre-
viated solutions for the less challenging (no bullet) exercises.

Proctorio
Remote Proctoring and Browser-Locking 
Capabilities

Remote proctoring and browser-locking capabilities, hosted by 
Proctorio within Connect, provide control of the assessment 

environment by enabling security options and verifying the identity 
of the student.

Seamlessly integrated within Connect, these services allow 
instructors to control the assessment experience by verifying 
identification, restricting browser activity, and monitoring student 
actions. 

Instant and detailed reporting gives instructors an at-a-glance 
view of potential academic integrity concerns, thereby avoiding 
personal bias and supporting evidence-based claims.

Free-Body Diagram Tool
Drawing a free-body diagram is one of the first steps in solving 
problems that involve forces acting on objects. Using this tool, 
students are able to learn this important skill in an interactive fash-
ion. In multiple real-world applications, this tool allows the students 
to draw several force vectors within appropriate error margins, 
check their work, make corrections, and in the end see the correct 
solution. Students get more practice opportunities, and instructors 
save time grading.

Virtual Labs for Physics 
With McGraw Hill Virtual Labs for Physics, the lab is always open. 
These virtual lab experiments provide a flexible online lab solution 
for preparation, supplement, replacement, or use with a textbook to 
bridge the gap between the lecture and lab.  Accessible simulations 
help students learn the data acquisition and analysis skills needed, 
then check for understanding and provide feedback. With pre-lab 
and post-lab assessment available, instructors can customize each 
assignment.

Test Builder in Connect
Available within Connect, Test Builder is a cloud-based tool that 
enables instructors to format tests that can be printed, administered 
within a Learning Management System, or exported as a Word doc-
ument. Test Builder offers a modern, streamlined interface for easy 
content configuration that matches course needs, without requiring 
a download. 

Test Builder allows you to:

· access all Test Bank content from a particular title.
· easily pinpoint the most relevant content through robust filter-

ing options. 
· manipulate the order of questions or scramble questions and/or 

answers.
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· pin questions to a specific location within a test. 
· determine your preferred treatment of algorithmic questions. 
· choose the layout and spacing. 
· add instructions and configure default settings. 

Test Builder provides a secure interface for better protection of 
content and allows for just-in-time updates to flow directly into 
assessments.

Writing Assignment
Available within Connect and Connect Master, the Writing 
Assignment tool delivers a learning experience to help students 
improve their written communication skills and conceptual under-
standing. As an instructor, you can assign, monitor, grade, and pro-
vide feedback on writing more efficiently and effectively.

 ReadAnywhere®
Read or study when it’s convenient for you with McGraw Hill’s free 
ReadAnywhere® app. Available for iOS or Android smartphones 
or tablets, ReadAnywhere gives users access to McGraw Hill tools 
including the eBook and SmartBook® 2.0 or Adaptive Learning 
Assignments in Connect. Take notes, highlight, and complete 
assignments offline—all of your work will sync when you open 
the app with Wi-Fi access. Log in with your McGraw Hill Connect 
username and password to start learning—anytime, anywhere! 

Tegrity: Lectures 24/7 
Tegrity in Connect is a tool that makes class time available 24/7 
by automatically capturing every lecture. With a simple one-click 
start-and-stop process, you capture all computer screens and corre-
sponding audio in a format that is easy to search, frame by frame. 
Students can replay any part of any class with easy-to-use, browser-
based viewing on a PC, Mac, or mobile device. 

Educators know that the more students can see, hear, and expe-
rience class resources, the better they learn. In fact, studies prove it. 
Tegrity’s unique search feature helps students efficiently find what they 
need, when they need it, across an entire semester of class recordings. 
Help turn your students’ study time into learning moments immediately 
supported by your lecture. With Tegrity, you also increase intent listen-
ing and class participation by easing students’ concerns about note-
taking. Using Tegrity in Connect will make it more likely you will see 
students’ faces, not the tops of their heads.

Create
Your Book, Your Way
McGraw Hill’s Content Collections Powered by Create® is a self-
service website that enables instructors to create custom course 
materials—print and eBooks—by drawing upon McGraw Hill’s 
comprehensive, cross-disciplinary content. Choose what you want 
from our high-quality textbooks, articles, and cases. Combine it 
with your own content quickly and easily, and tap into other rights-
secured, third-party content such as readings, cases, and articles. 
Content can be arranged in a way that makes the most sense for 
your course, and you can include the course name and information 
as well. Choose the best format for your course: color print, black-
and-white print, or eBook. The eBook can be included in your 
Connect course and is available on the free ReadAnywhere® app for 
smartphone or tablet access as well. When you are finished custom-
izing, you will receive a free digital copy to review in just minutes! 
Visit McGraw Hill Create®—www.mcgrawhillcreate.com— today 
and begin building!

Reflecting the Diverse World Around Us
McGraw Hill believes in unlocking the potential of every learner 
at every stage of life. To accomplish that, we are dedicated to cre-
ating products that reflect, and are accessible to, all the diverse, 
global customers we serve. Within McGraw Hill, we foster a 
culture of belonging, and we work with partners who share our 
commitment to equity, inclusion, and diversity in all forms. In 
McGraw Hill Higher Education, this includes, but is not limited 
to, the following:

· Refreshing and implementing inclusive content guidelines 
around topics including generalizations and stereotypes, gen-
der, abilities/disabilities, race/ethnicity, sexual orientation, 
diversity of names, and age.

· Enhancing best practices in assessment creation to eliminate 
cultural, cognitive, and affective bias.

· Maintaining and continually updating a robust photo library of 
diverse images that reflect our student populations.

· Including more diverse voices in the development and review 
of our content. 

· Strengthening art guidelines to improve accessibility by ensur-
ing meaningful text and images are distinguishable and per-
ceivable by users with limited color vision and moderately low 
vision.
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Changes Since  
the Second Edition

In all chapters we added apps to perform interactive Concept 
Checks, a total number of 306, distributed over all 40 chapters.

Chapter 1
We added interactive apps to study logarithmic scales of length, mass, 
and time.  We also provided interactive apps for vector addition, scalar 
vector products, and vector products in Cartesian and spherical coordi-
nates. The definition of the kilogram base unit was updated.

Chapter 2
We added an interactive app to study logarithmic scales of speed, 
an app to illustrate the relationship between position, velocity, and 
acceleration, a video demonstration of weightlessness during free 
fall, two apps to illustrate motion with constant acceleration visual-
ized with a moving car, and an app that shows the convergence of 
difference ratios to derivatives. We also added two Concept Checks.

Chapter 3
We added apps to illustrate projectile motion trajectories with and 
without a drag force, two gaming apps to study relative motion, and 
an app to study Cartesian velocity components during projectile 
motion.  We include three video demonstrations of a basketball free 
throw, the independence of motion in the x- and y-directions, and 
the “shoot-the-monkey” lecture demonstration.

Chapter 4
We added two video demonstrations of dropping objects that reach 
terminal speed and on acceleration on an inclined plane. We supplied 
an app with which the student can study the Atwood machine, and 
we included seven different apps with which the student can practice 
drawing free-body diagrams. We added three new Concept Checks.

Chapter 5
We added interactive apps to study logarithmic scales of energy and 
power. We also included apps to study wind turbine power produc-
tion, overall U.S. electricity production, visualization of the work 
done by gravity, and studying motion on an inclined plane dur-
ing snowboarding.  Video demonstrations included were lifting of 
a chain, lifting of a weight, and dropping of a vase. To introduce 
the spring force, we included an app to show the force vector and 
another app to portray the work done against the spring force. 
Figures 5.6 and 5.20 were updated with recent data, and the discus-
sion of renewable electricity production was revised.

Chapter 6
We added video demonstrations for potential energy stored in defor-
mation, for the potential energy of a waterfall, and for races between 
two identical balls on different paths.  Apps illustrating the differ-
ence in work done by gravity and the friction force and for motion 
on an inclined plane with friction were also added. Three additional 
Concept Checks were included. 

Chapter 7
We added video demonstrations for the ballistic pendulum, colli-
sion of a basketball and tennis ball, totally elastic air track collisions 
with equal and unequal masses, pendulum collisions, a pile driver, 
totally inelastic collisions, and collisions with two different coef-
ficients of restitution. Apps to simulate totally elastic and totally 
inelastic collisions were provided. One additional Concept Check 
was included.

Chapter 8
Apps to illustrate vectors in cylindrical and spherical coordi-
nate systems were provided.  Two videos showing launches of toy 
rockets were included.  Example 8.2 was revised. One additional 
Concept Check was inserted.

Chapter 9
We added centripetal force video illustrations for chips on a table, 
with and without banking, a roller-coaster loop, and a ball on circu-
lar motion in a vertical plane. We also provided a video of a wind 
turbine / wind farm. Two apps to illustrate polar coordinates were 
included, and four Concept Checks were added. Two examples 
referring to outdated technologies were removed.

Chapter 10
One Concept Check was added and another one removed. A total 
of 25 video demonstrations for the angular momentum chair, for 
angular momentum conservation, for torque, for a yo-yo, for roll-
ing motion through a loop, for a gyroscope, for precession, for races 
between round objects with different moments of inertia, and for 
falling hinged rods were produced. We included an app to study the 
Atwood machine including the rotation of the pulley.

Chapter 11
Four different apps to practice drawing of free-body diagrams were 
added. A gaming app for stacking blocks was included as well.
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Chapter 12
We revised Example 12.4, including Figure 12.21, with recent data 
on the black hole in the center of our galaxy, and discussed the 
Nobel Prize–winning work leading to the production of this figure. 
Example 12.5, which quantitatively discusses evidence for dark 
matter in the Andromeda galaxy was added. We updated Figure 
12.23 with satellite positions as of December 2021. One additional 
Concept Check was inserted. We added apps to study Kepler’s 
Laws, satellite orbits, and kinetic and potential energy in orbits. 
Videos illustrating planetary orbits in geo-centric and helio-centric 
frames were produced.

Chapter 13
We added interactive apps to study logarithmic scales of pressure.  
A total of 12 video demonstrations showing a wind farm, a swim-
mer in paint thinner and water, the Bernoulli Effect, buoyancy, and 
the effects of air pressure were produced. We also included an addi-
tional app to study the continuity equation.

Chapter 14
Apps to enable the student to study the similarities between circu-
lar motion and harmonic oscillations, pendulum motion, a mass 
on a spring in undamped harmonic motion, a mass on a spring in 
damped oscillation, and a mass on a spring with forced damped 
oscillations were added. Six video demonstrations of oscillating 
systems were produced. 

Chapter 15
We produced 12 video demonstrations of coupled oscillations, wave 
propagation, wave addition, standing waves, and resonance. We also 
included apps to simulate and study eigenmodes in coupled oscilla-
tions, wave interference in one dimension and in two dimension. We 
updated Section 15.9 to reflect the advances made in gravitational 
wave detection.

Chapter 16
We inserted a new Concept Check. We included videos on wave 
tanks, resonance pipes, the Doppler effect, and beats. We also pro-
duced apps to enable the student to study beats, the Doppler effect, 
and the creation of Mach cones.

Chapter 17
We added interactive apps to study logarithmic scales of tempera-
ture. An app to illustrate temperature conversion was also included. 
We also produced video demonstrations of bimetal bending, as well 
as thermal expansion. Section 17.5, on the surface temperature of 
Earth, was updated with the most recent data. Section 17.6, on the 
temperature of the Universe, was updated with the most recent find-
ings from the Planck observatory.

Chapter 18
We created a simple app to visualize different countries’ contribu-
tions to the discovery of elements during the last few centuries. We 
also included apps to show the phase transition temperature of the 
individual elements, and the heat required to change the tempera-
ture of ice/water/steam. We updated the section on global warming 

and Figure 18.28 to reflect the most recent data on the CO2 con-
centration in the atmosphere. A discussion of the 2021 Nobel Prize, 
awarded to Syukuro Manabe, was included.

Chapter 19
We included three video demonstrations of the thermal expansion 
and contraction of gases. Two apps on three-dimensional gases and 
gas law allow the student to study the behavior of gases at different 
temperatures, pressures, and volumes.

Chapter 20
We included video demonstrations of a heat pump and a Sterling 
engine. We also provided an app that allows the student to visualize 
the free expansion of a gas in three dimensions, and an app to study 
the Carnot process.

Chapter 21
We produced two video demonstrations of electrostatic attraction. 
We added an app that allows students to visualize the Coulomb 
interaction between point charges.

Chapter 22
We added video demonstrations of the Faraday cage, a visualization 
of a dipole field, and video demonstrations of electrostatic deflec-
tion, as well as shielding. We also included an app to let students 
study electric field in three dimensions.

Chapter 23
Two video demonstrations of a Van de Graaf generator are included. 
We also added an app to help the student visualize electric potential. 
A new Example 23.8 was added, and a new Conceptual Question 23.16 
was constructed.

Chapter 24
We added two video demonstrations of capacitor discharges. We 
provided an app to allow the student to experiment with the equiva-
lent capacitance of several configurations of individual capacitors in 
series and/or in parallel. We updated the discussion of the National 
Ignition Facility with the most recent performance data.

Chapter 25
We added an interactive app to study logarithmic scales of cur-
rent. The video demonstrations added to this chapter are about drift 
velocity and on conduction in heated glass. We created two apps to 
enable the student to visualize the potential and currents in a cir-
cuit with resistors in parallel and in series. Another app allows the 
student to experiment with the equivalent resistance of several con-
figurations of individual resistors in series and/or in parallel.

Chapter 26
We added a video showing the time dependence of the current in an 
RC circuit. Two apps allow the student to experiment with charg-
ing and discharging of capacitors in RC circuits. Another app lets 
the student change parameters in a multi-loop circuit of resistors 
and batteries to study Kirchhoff’s rules. A figure discussing an EEG 
taken with an Apple Watch was added.
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Chapter 27
We added six video demonstrations that show magnetic forces on 
current-carrying wires and bending of electron beams in magnetic 
fields. We also included an app that allows the student to study and 
visualize the Lorentz force.

Chapter 28
New video demonstrations include torque on a compass needle, an 
electromagnet in action, forces between current-carrying wires, and 
the Curie temperature. We added an app to illustrate the definition 
of Ampere’s Law.

Chapter 29
We added 12 video demonstrations on induction and eddy currents. 
A new induction app allows the student to explore induced currents 
in a loop due to moving magnets.

Chapter 30
We added three new apps that allow detailed visualization of RLC 
circuits, including frequency dependence of impedance and phasors.

Chapter 31
We updated the discussion of assigned frequency bands in the electro-
magnetic spectrum. We also updated Example 31.1 to reflect battery 
performance in modern electric cars. We added five new video demon-
strations about polarization and radiation pressure.  We included a new 
app on linear polarizers that allows the student to study polarized light.

Chapter 32
We added eight new apps to allow the student to interactively 
explore image construction with plane mirrors, parabolic mirrors, 
converging mirrors, diverging mirrors, dispersion in prisms, and 
Snell’s Law.

Chapter 33
We added new apps for image construction with converging lenses 
and diverging lenses.

Chapter 34
One new video demonstration and four new apps allow detailed 
interactive exploration of diffraction.

Chapter 35
We rewrote the discussion of gravitational waves in Section 35.5 
following their discovery in 2015, which led to the 2017 Nobel 
Prize in Physics. Video demonstrations for the equivalence princi-
ple and particle-antiparticle creation at RHIC are now included. We 
also added an app that interactively explores the twin paradox. 

Chapter 36
We updated the discussion of cosmic microwave background with 
new results. The discussion of fundamental constants was updated 
to reflect the most recent changes in the standards. An app to 
explore blackbody radiation, Planck’s Radiation Law, and Wien’s 
Law was added.

Chapter 37
We added an app for the student to study energy levels and wave 
functions for a quantum particle in a box. We updated the discus-
sion of quantum computing to reflect the most recent achievements.

Chapter 38
We updated the periodic table with the names of recently named 
elements 113, 115, 117, and 118. We updated the discussion of 
high-powered lasers with the newest performance data. Three new 
apps allow the student to explore the Bohr model of the atom, the 
quantum mechanical wave functions of the hydrogen atom, and the 
filling of electron shells in the periodic table.

Chapter 39
Additive and subtractive color mixer apps were added to illus-
trate the ideas behind quark and gluon confinement. Discussions 
of masses and lifetimes of elementary particles were updated to 
conform with the most recent research results. The Planck results 
replace the WMAP results for the measurements of the cosmic 
microwave background.

Chapter 40
We added video demonstrations for a chain reaction (with corks 
and mousetraps) and a heavy ion collision. New interactive apps 
allow the student to explore chain reactions, MRIs, and decays. 
Two additional apps that were added explore isotopes and their 
half-lives. We updated Figure 40.5 with the newly discovered 
isotopes.
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